C语言科学计算入门之矩阵乘法的相关计算

C语言科学计算入门之矩阵乘法的相关计算,第1张

概述1.矩阵相乘矩阵相乘应满足的条件:(1)矩阵A的列数必须等于矩阵B的行数,矩阵A与矩阵B才能相乘;

1.矩阵相乘
矩阵相乘应满足的条件:
(1) 矩阵A的列数必须等于矩阵B的行数,矩阵A与矩阵B才能相乘;
(2) 矩阵C的行数等于矩阵A的行数,矩阵C的列数等于矩阵B的列数;
(3) 矩阵C中第i行第j列的元素等于矩阵A的第i行元素与矩阵B的第j列元素对应乘积之和,即

如:

则:

2. 常用矩阵相乘算法
    用A的第i行分别和B的第j列的各个元素相乘求和,求得C的第i行j列的元素,这种算法中,B的访问是按列进行访问的,代码如下:

voID arymul(int a[4][5],int b[5][3],int c[4][3]){ int i,j,k; int temp; for(i = 0; i < 4; i++){ for(j = 0; j < 3; j++){  temp = 0;  for(k = 0; k < 5; k++){  temp += a[i][k] * b[k][j];  }  c[i][j] = temp;  printf("%d/t",c[i][j]); } printf("%d/n"); }}

3. 改进的算法
    矩阵A、B、C都按行(数据的存储顺序)访问,以提高存储器访问效率,对于A的第i行中,第j列的元素分别和B的第j行的元素相乘,对于B中相同的列k在上述计算过程中求和,从而得到C第i行k列的数据,代码如下:

voID arymul1(int a[4][5],k; int temp[3] = {0}; for(i = 0; i < 4; i++){ for(k = 0; k < 3; k ++)  temp[k] = 0; for(j = 0; j < 5; j++){//当前行的每个元素  for(k = 0; k < 3; k++){  temp[k] += a[i][j] * b[j][k];  } } for(k = 0; k < 3; k++){  c[i][k] = temp[k];  printf("%d/t",c[i][k]); } printf("%d/n"); }}

这种算法很容易转到稀疏矩阵的相乘算法。

PS:斯特拉森算法的实现
斯特拉森方法,是由v.斯特拉森在1969年提出的一个方法。

我们先讨论二阶矩阵的计算方法。
对于二阶矩阵

a11 a12 b11 b12 A = a21 a22 B = b21 b22 

先计算下面7个量(1)

x1 = (a11 + a22) * (b11 + b22); x2 = (a21 + a22) * b11; x3 = a11 * (b12 - b22); x4 = a22 * (b21 - b11); x5 = (a11 + a12) * b22; x6 = (a21 - a11) * (b11 + b12); x7 = (a12 - a22) * (b21 + b22); 

再设C = AB。根据矩阵相乘的规则,C的各元素为(2)

c11 = a11 * b11 + a12 * b21 c12 = a11 * b12 + a12 * b22 c21 = a21 * b11 + a22 * b21 c22 = a21 * b12 + a22 * b22 

比较(1)(2),C的各元素可以表示为(3)

c11 = x1 + x4 - x5 + x7 c12 = x3 + x5 c21 = x2 + x4 c22 = x1 + x3 - x2 + x6 

根据以上的方法,我们就可以计算4阶矩阵了,先将4阶矩阵A和B划分成四块2阶矩阵,分别利用公式计算它们的乘积,再使用(1)(3)来计算出最后结果。

ma11 ma12 mb11 mb12 A4 = ma21 ma22 B4 = mb21 mb22 

其中

a11 a12 a13 a14 b11 b12 b13 b14 ma11 = a21 a22 ma12 = a23 a24 mb11 = b21 b22 mb12 = b23 b24 a31 a32 a33 a34 b31 b32 b33 b34 ma21 = a41 a42 ma22 = a43 a44 mb21 = b41 b42 mb22 = b43 b44 

实现

// 计算2X2矩阵 voID Multiply2X2(float& fOut_11,float& fOut_12,float& fOut_21,float& fOut_22,float f1_11,float f1_12,float f1_21,float f1_22,float f2_11,float f2_12,float f2_21,float f2_22) { const float x1((f1_11 + f1_22) * (f2_11 + f2_22)); const float x2((f1_21 + f1_22) * f2_11); const float x3(f1_11 * (f2_12 - f2_22)); const float x4(f1_22 * (f2_21 - f2_11)); const float x5((f1_11 + f1_12) * f2_22); const float x6((f1_21 - f1_11) * (f2_11 + f2_12)); const float x7((f1_12 - f1_22) * (f2_21 + f2_22)); fOut_11 = x1 + x4 - x5 + x7; fOut_12 = x3 + x5; fOut_21 = x2 + x4; fOut_22 = x1 - x2 + x3 + x6; } // 计算4X4矩阵 voID Multiply(CLAYMATRIX& mOut,const CLAYMATRIX& m1,const CLAYMATRIX& m2) { float fTmp[7][4]; // (ma11 + ma22) * (mb11 + mb22) Multiply2X2(fTmp[0][0],fTmp[0][1],fTmp[0][2],fTmp[0][3],m1._11 + m1._33,m1._12 + m1._34,m1._21 + m1._43,m1._22 + m1._44,m2._11 + m2._33,m2._12 + m2._34,m2._21 + m2._43,m2._22 + m2._44); // (ma21 + ma22) * mb11 Multiply2X2(fTmp[1][0],fTmp[1][1],fTmp[1][2],fTmp[1][3],m1._31 + m1._33,m1._32 + m1._34,m1._41 + m1._43,m1._42 + m1._44,m2._11,m2._12,m2._21,m2._22); // ma11 * (mb12 - mb22) Multiply2X2(fTmp[2][0],fTmp[2][1],fTmp[2][2],fTmp[2][3],m1._11,m1._12,m1._21,m1._22,m2._13 - m2._33,m2._14 - m2._34,m2._23 - m2._43,m2._24 - m2._44); // ma22 * (mb21 - mb11) Multiply2X2(fTmp[3][0],fTmp[3][1],fTmp[3][2],fTmp[3][3],m1._33,m1._34,m1._43,m1._44,m2._31 - m2._11,m2._32 - m2._12,m2._41 - m2._21,m2._42 - m2._22); // (ma11 + ma12) * mb22 Multiply2X2(fTmp[4][0],fTmp[4][1],fTmp[4][2],fTmp[4][3],m1._11 + m1._13,m1._12 + m1._14,m1._21 + m1._23,m1._22 + m1._24,m2._33,m2._34,m2._43,m2._44); // (ma21 - ma11) * (mb11 + mb12) Multiply2X2(fTmp[5][0],fTmp[5][1],fTmp[5][2],fTmp[5][3],m1._31 - m1._11,m1._32 - m1._12,m1._41 - m1._21,m1._42 - m1._22,m2._11 + m2._13,m2._12 + m2._14,m2._21 + m2._23,m2._22 + m2._24); // (ma12 - ma22) * (mb21 + mb22) Multiply2X2(fTmp[6][0],fTmp[6][1],fTmp[6][2],fTmp[6][3],m1._13 - m1._33,m1._14 - m1._34,m1._23 - m1._43,m1._24 - m1._44,m2._31 + m2._33,m2._32 + m2._34,m2._41 + m2._43,m2._42 + m2._44); // 第一块 mOut._11 = fTmp[0][0] + fTmp[3][0] - fTmp[4][0] + fTmp[6][0]; mOut._12 = fTmp[0][1] + fTmp[3][1] - fTmp[4][1] + fTmp[6][1]; mOut._21 = fTmp[0][2] + fTmp[3][2] - fTmp[4][2] + fTmp[6][2]; mOut._22 = fTmp[0][3] + fTmp[3][3] - fTmp[4][3] + fTmp[6][3]; // 第二块 mOut._13 = fTmp[2][0] + fTmp[4][0]; mOut._14 = fTmp[2][1] + fTmp[4][1]; mOut._23 = fTmp[2][2] + fTmp[4][2]; mOut._24 = fTmp[2][3] + fTmp[4][3]; // 第三块 mOut._31 = fTmp[1][0] + fTmp[3][0]; mOut._32 = fTmp[1][1] + fTmp[3][1]; mOut._41 = fTmp[1][2] + fTmp[3][2]; mOut._42 = fTmp[1][3] + fTmp[3][3]; // 第四块 mOut._33 = fTmp[0][0] - fTmp[1][0] + fTmp[2][0] + fTmp[5][0]; mOut._34 = fTmp[0][1] - fTmp[1][1] + fTmp[2][1] + fTmp[5][1]; mOut._43 = fTmp[0][2] - fTmp[1][2] + fTmp[2][2] + fTmp[5][2]; mOut._44 = fTmp[0][3] - fTmp[1][3] + fTmp[2][3] + fTmp[5][3]; } 

比较
在标准的定义算法中我们需要进行n * n * n次乘法运算,新算法中我们需要进行7log2n次乘法,对于最常用的4阶矩阵:   原算法 新算法
加法次数 48 72(48次加法,24次减法)
乘法次数 64 49
需要额外空间 16 * sizeof(float) 28 * sizeof(float)
新算法要比原算法多了24次减法运算,少了15次乘法。但因为浮点乘法的运算速度要远远慢于加/减法运算,所以新算法的整体速度有所提高。

总结

以上是内存溢出为你收集整理的C语言科学计算入门之矩阵乘法的相关计算全部内容,希望文章能够帮你解决C语言科学计算入门之矩阵乘法的相关计算所遇到的程序开发问题。

如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/1250838.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-06-07
下一篇 2022-06-07

发表评论

登录后才能评论

评论列表(0条)

保存