使用C语言解决字符串全排列问题

使用C语言解决字符串全排列问题,第1张

概述问题输入一个字符串,打印出该字符串中字符的所有排列。例如输入字符串abc,则输出由字符a,b,c所能排列出来的所有字符串abc,acb,bac,bca,cab和cba

问题
输入一个字符串,打印出该字符串中字符的所有排列。例如输入字符串abc,则输出由字符a,b,c所能排列出来的所有字符串abc,acb,bac,bca,cab和cba

思路
这是典型的递归求解问题,递归算法有四个特性:

    必须有可达到的终止条件,否则程序陷入死循环     子问题在规模上比原问题小     子问题可通过再次递归调用求解     子问题的解应能组合成整个问题的解


对于字符串的排列问题:
如果能生成n-1个元素的全排列,就能生成n个元素的全排列。对于只有一个元素的集合,可以直接生成全排列。所以全排列的递归终止条件很明确,只有一个元素时。我们可以分析一下全排列的过程:

    首先,我们固定第一个字符a,求后面两个字符bc的排列     当两个字符bc排列求好之后,我们把第一个字符a和后面的b交换,得到bac,接着我们固定第一个字符b,求后面两个字符ac的排列     现在是把c放在第一个位置的时候了,但是记住前面我们已经把原先的第一个字符a和后面的b做了交换,为了保证这次c仍是和原先处在第一个位置的a交换,我们在拿c和第一个字符交换之前,先要把b和a交换回来。在交换b和a之后,再拿c和处于第一位置的a进行交换,得到cba。我们再次固定第一个字符c,求后面两个字符b、a的排列     既然我们已经知道怎么求三个字符的排列,那么固定第一个字符之后求后面两个字符的排列,就是典型的递归思路了


下面这张图很清楚的给出了递归的过程:

基本解决方法
方法1:依次从字符串中取出一个字符作为最终排列的第一个字符,对剩余字符组成的字符串生成全排列,最终结果为取出的字符和剩余子串全排列的组合。

#include <iostream>#include <string>using @R_404_6889@space std; voID permute1(string prefix,string str){  if(str.length() == 0)    cout << prefix << endl;  else  {    for(int i = 0; i < str.length(); i++)      permute1(prefix+str[i],str.substr(0,i)+str.substr(i+1,str.length()));  }} voID permute1(string s){  permute1("",s);} int main(){  //method1,unable to remove duplicate permutations.  cout << "method1" << endl;  permute1("ABA");}

优点:该方法易于理解,但无法移除重复的排列,如:s="ABA",会生成两个“AAB”。

方法2:利用交换的思想,具体见实例,但该方法不如方法1容易理解。

#include <iostream>#include <string>#include <cstdio>using @R_404_6889@space std; voID swap(char* x,char* y){  char tmp;  tmp = *x;  *x = *y;  *y = tmp;} /* Function to print permutations of string  This function takes three parameters:  1. String  2. Starting index of the string  3. Ending index of the string. */voID permute(char *a,int i,int n){  int j;  if (i == n)   printf("%s\n",a);  else  {    for (j = i; j <= n; j++)    {     if(a[i] == a[j] && j != i) //为避免生成重复排列,当不同位置的字符相同时不再交换       continue;     swap((a+i),(a+j));     permute(a,i+1,n);     swap((a+i),(a+j)); //backtrack    }  }}  int main(){  //method2  cout << "method2" << endl;  char a[] = "ABA";  permute(a,2);  return 0;}

两种方法的生成结果:

method1ABAAABBAABAAAABABAmethod2ABAAABBAA

下面来看ACM题目实例

示例题目
题目描述

    题目描述: 
    给定一个由不同的小写字母组成的字符串,输出这个字符串的所有全排列。 
    我们假设对于小写字母有'a' < 'b' < ... < 'y' < 'z',而且给定的字符串中的字母已经按照从小到大的顺序排列。 
    输入: 
    输入只有一行,是一个由不同的小写字母组成的字符串,已知字符串的长度在1到6之间。 
    输出: 
    输出这个字符串的所有排列方式,每行一个排列。要求字母序比较小的排列在前面。字母序如下定义: 
    已知S = s1s2...sk,T = t1t2...tk,则S < T 等价于,存在p (1 <= p <= k),使得 
    s1 = t1,s2 = t2,...,sp - 1 = tp - 1,sp < tp成立。 
    样例输入: 
    abc 
    样例输出: 
    abc 
    acb 
    bac 
    bca 
    cab 
    cba 
    提示: 
    每组样例输出结束后要再输出一个回车。

    ac代码
   

 #include <stdio.h>   #include <stdlib.h>   #include <string.h>       struct seq   {     char str[7];   };       struct seq seqs[721];   int count;       voID swap(char *str,int a,int b)   {     char temp;     temp = str[a];     str[a] = str[b];     str[b] = temp;   }       voID permutation_process(char *@R_404_6889@,int begin,int end) {     int k;         if (begin == end - 1) {       strcpy(seqs[count].str,@R_404_6889@);       count ++;     }else {       for (k = begin; k < end; k ++) {         swap(@R_404_6889@,k,begin);         permutation_process(@R_404_6889@,begin + 1,end);         swap(@R_404_6889@,begin);       }     }   }       int compare(const voID *p,const voID *q)   {     const char *a = p;     const char *b = q;     return strcmp(a,b);   }       int main()   {     char @R_404_6889@[7];     int i,len;         while (scanf("%s",@R_404_6889@) != EOF) {       count = 0;       len = strlen(@R_404_6889@);       permutation_process(@R_404_6889@,len);       qsort(seqs,count,sizeof(seqs[0]),compare);           for (i = 0; i < count; i ++) {         printf("%s\n",seqs[i].str);       }       printf("\n");     }         return 0;   } 

       
    /**************************************************************
        Problem: 1120
        User: wangzhengyi
        Language: C
        Result: Accepted
        Time:710 ms
        Memory:920 kb
    ****************************************************************/ 

去掉重复的全排列
上述代码有个缺陷,就是会造成重复数据的输出,例如abb这种字符串,上述程序跑完结果如图:

由于全排列就是从第一个数字起,每个数分别与它后面的数字交换,我们先尝试加个这样的判断――如果一个数与后面的数字相同那么这两个数就不交换了。例如abb,第一个数与后面两个数交换得bab,bba。然后abb中第二个数和第三个数相同,就不用交换了。但是对bab,第二个数和第三个数不同,则需要交换,得到bba。由于这里的bba和开始第一个数与第三个数交换的结果相同了,因此这个方法不行。

换种思维,对abb,第一个数a与第二个数b交换得到bab,然后考虑第一个数与第三个数交换,此时由于第三个数等于第二个数,所以第一个数就不再用与第三个数交换了。再考虑bab,它的第二个数与第三个数交换可以解决bba。此时全排列生成完毕!

这样,我们得到在全排列中去掉重复的规则:
去重的全排列就是从第一个数字起,每个数分别与它后面非重复出现的数字交换。

贴出上面ac代码的去重版本:
   

 #include <stdio.h>   #include <stdlib.h>   #include <string.h>      struct seq   {     char str[7];   };      struct seq seqs[721];   int count;      int is_swap(char *str,int k)   {     int i,flag;        for (i = begin,flag = 1; i < k; i ++) {       if (str[i] == str[k]) {         flag = 0;         break;       }     }        return flag;   }      voID swap(char *str,int b)   {     char temp;     temp = str[a];     str[a] = str[b];     str[b] = temp;   }      voID permutation_process(char *@R_404_6889@,int end) {     int k;        if (begin == end - 1) {       strcpy(seqs[count].str,@R_404_6889@);       count ++;     }else {       for (k = begin; k < end; k ++) {         if (is_swap(@R_404_6889@,begin,k)) {           swap(@R_404_6889@,begin);           permutation_process(@R_404_6889@,end);           swap(@R_404_6889@,begin);         }       }     }   }      int compare(const voID *p,b);   }      int main()   {     char @R_404_6889@[7];     int i,len;        while (scanf("%s",compare);          for (i = 0; i < count; i ++) {         printf("%s\n",seqs[i].str);       }       printf("\n");     }        return 0;   } 

总结

以上是内存溢出为你收集整理的使用C语言解决字符串全排列问题全部内容,希望文章能够帮你解决使用C语言解决字符串全排列问题所遇到的程序开发问题。

如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/1254478.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-06-07
下一篇 2022-06-07

发表评论

登录后才能评论

评论列表(0条)

保存