题意
$n$个食物,每个食物有一个满意度,从中选出$m$个,使得满意度最大
同时有$k$个关系:若$x_i$在$y_i$之前吃,则会获得$C_i$的代价
Sol
官方题解是$O(2^n n^2)$的,不过我没发现状态之间的联系,就写了一个$O(2^n n^3)$的,不过还是水过去了。
$f[i][j][sta]$表示现在已经放了$i$个,本轮要放第$j$个,状态为$sta$
转移的时候枚举一下上一个放了什么
/*
*/
#include
#include@H_301_26@
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define Pair pair
#define MP(x,y) make_pair(x,y)
#define fi first
#define se second
#define int long long
#define LL long long
#define rg register
#define sc(x) scanf("%d",&x);
#define pt(x) printf("%d ",x);
#define db(x) double x
#define rep(x) for(int i = 1; i <= x; i++)
//#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf,1,1<<22,stdin),p1 == p2) ? EOF : *p1++)
//char buf[(1 << 22)],*p1 = buf,*p2 = buf;
char obuf[1<<24],*O = obuf;
#define OS *O++ = ' ';
using namespace std;
using namespace __gnu_pbds;
const int MAXN = 1e6 + 10,INF = 1e9 + 10,mod = 1e9 + 7;
const double eps = 1e-9;
inline int read() {
char c = getchar(); int x = 0,f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0',c = getchar();
return x * f;
}
voID print(int x) {
if(x > 9) print(x / 10);
*O++ = x % 10 + '0';
}
int N,M,K;
int f[2][19][262145];
int lk[19][19],a[MAXN];
main() {
N = read(); M = read(); K = read();
for(int i = 1; i <= N; i++) a[i] = read();
for(int i = 1; i <= K; i++) {
int x = read(),y = read(),z = read();
lk[x][y] = z;
}
int lim = (1 << N) - 1,o = 0;
for(int i = 1; i <= M; i++) {
o ^= 1;
for(int sta = 0; sta <= lim; sta++) {
if((__builtin_popcount(sta)) != i) continue;
for(int j = 1; j <= N; j++) {//��һ�ֳԵ�ɶ
if(!(sta & (1 << j - 1))) continue;
for(int k = 1; k <= N; k++) {//��һ�ֳԵ�ɶ
if(sta & (1 << k - 1)) {
/*if(o == 0 && j == 2 && k == 1) {
puts("GG");
}*/
f[o][j][sta] = max(f[o][j][sta],f[o ^ 1][k][sta ^ (1 << j - 1)] + lk[k][j]);
}
}
}
}
}
// printf("%dn",f[o][2][lim]);
int ans = 0;
for(int i = 1; i <= N; i++) {
for(int sta = 0; sta <= lim; sta++) {
if((__builtin_popcount(sta)) != M) continue;
if(!(sta & (1 << i - 1))) continue;
int Now = f[o][i][sta];
for(int j = 1; j <= N; j++)
if(sta & (1 << j - 1)) Now += a[j];
ans = max(ans,Now);
}
}
cout << ans;
return 0;
}
/*
2 2 1
1 1
2 1 1
*/
总结以上是内存溢出为你收集整理的cf580D. Kefa and Dishes(状压dp)全部内容,希望文章能够帮你解决cf580D. Kefa and Dishes(状压dp)所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)