摘要:在平常的二位数组运用中,总是容易造成空间浪费,所以将矩阵压缩很有必要。
一、压缩矩阵转置 1、定义压缩矩阵存放原矩阵的行数、列数和有效数据的个数。
//定义的一个矩阵
typedef struct Triple{
int i;
int j;
elem e;
} Triple, *TriplePtr;
//压缩后的矩阵
typedef struct CompressedMatrix{
int rows,columns,numElements;
Triple* elements;
} CompressedMatrix, *CompressedMatrixPtr;
2、初始化
初始化是先动态分配一块动态的空间,然后将压缩后的矩阵传入并赋值。
CompressedMatrixPtr initCompressedMatrix(int paraRows, int paraColumns, int paraElements, int** paraData){
int i;
CompressedMatrixPtr resultPtr = (CompressedMatrixPtr)malloc(sizeof(struct CompressedMatrix));
resultPtr->rows = paraRows;
resultPtr->columns = paraColumns;
resultPtr->numElements = paraElements;
resultPtr->elements = (TriplePtr)malloc(paraElements * sizeof(struct Triple));
for(i = 0; i < paraElements; i ++){
resultPtr->elements[i].i = paraData[i][0];
resultPtr->elements[i].j = paraData[i][1];
resultPtr->elements[i].e = paraData[i][2];
}//Of for i
return resultPtr;
}// Of initCompressedMatrix
3、打印
void printCompressedMatrix(CompressedMatrixPtr paraPtr){
int i;
for(i = 0; i < paraPtr->numElements; i ++){
printf("(%d, %d): %d\r\n", paraPtr->elements[i].i, paraPtr->elements[i].j, paraPtr->elements[i].e);
}//Of for i
}// Of printCompressedMatrix
4、压缩矩阵的转置
所谓矩阵的转置,就是把矩阵的行数转变为列数、把矩阵的列数转变为行数,但是数据元素不加改变。
CompressedMatrixPtr transposeCompressedMatrix(CompressedMatrixPtr paraPtr){
//Step 1. Allocate space.
int i, tempColumn, tempPosition;
int *tempColumnCounts = (int*)malloc(paraPtr->columns * sizeof(int));
int *tempOffsets = (int*)malloc(paraPtr->columns * sizeof(int));
for(i = 0; i < paraPtr->columns; i ++){
tempColumnCounts[i] = 0;
}//Of for i
CompressedMatrixPtr resultPtr = (CompressedMatrixPtr)malloc(sizeof(struct CompressedMatrix));
resultPtr->rows = paraPtr->columns;
resultPtr->columns = paraPtr->rows;
resultPtr->numElements = paraPtr->numElements;
resultPtr->elements = (TriplePtr)malloc(paraPtr->numElements * sizeof(struct Triple));
//Step 2. One scan to calculate offsets.
for(i = 0; i < paraPtr->numElements; i ++) {
tempColumnCounts[paraPtr->elements[i].j] ++;
}//Of for i
tempOffsets[0] = 0;
for(i = 1; i < paraPtr->columns; i ++){
tempOffsets[i] = tempOffsets[i - 1] + tempColumnCounts[i - 1];
printf("tempOffsets[%d] = %d \r\n", i, tempOffsets[i]);
}//Of for i
//Step 3. Another scan to fill data.
for(i = 0; i < paraPtr->numElements; i ++) {
tempColumn = paraPtr->elements[i].j;
tempPosition = tempOffsets[tempColumn];
resultPtr->elements[tempPosition].i = paraPtr->elements[i].j;
resultPtr->elements[tempPosition].j = paraPtr->elements[i].i;
resultPtr->elements[tempPosition].e = paraPtr->elements[i].e;
tempOffsets[tempColumn]++;
}//Of for i
return resultPtr;
}//Of transposeCompressedMatrix
5、测试函数
void compressedMatrixTest(){
CompressedMatrixPtr tempPtr1, tempPtr2;
int i, j, tempElements;
//Construct the first sample matrix.
tempElements = 4;
int** tempMatrix1 = (int**)malloc(tempElements * sizeof(int*));
for(i = 0; i < tempElements; i ++){
tempMatrix1[i] = (int*)malloc(3 * sizeof(int));
}//Of for i
int tempMatrix2[4][3] = {{0, 0, 2}, {0, 2, 3}, {2, 0, 5}, {2, 1, 6}};
for(i = 0; i < tempElements; i ++){
for(j = 0; j < 3; j ++) {
tempMatrix1[i][j] = tempMatrix2[i][j];
}//Of for j
}//Of for i
tempPtr1 = initCompressedMatrix(2, 3, 4, tempMatrix1);
printf("After initialization.\r\n");
printCompressedMatrix(tempPtr1);
tempPtr2 = transposeCompressedMatrix(tempPtr1);
printf("After transpose.\r\n");
printCompressedMatrix(tempPtr2);
}// Of main
6、完整代码
#include
#include
typedef int elem;
//定义的一个矩阵
typedef struct Triple{
int i;
int j;
elem e;
} Triple, *TriplePtr;
//压缩后的矩阵
typedef struct CompressedMatrix{
int rows,columns,numElements;
Triple* elements;
} CompressedMatrix, *CompressedMatrixPtr;
/**
* 初始化一个压缩后的矩阵
*/
CompressedMatrixPtr initCompressedMatrix(int paraRows, int paraColumns, int paraElements, int** paraData){
int i;
CompressedMatrixPtr resultPtr = (CompressedMatrixPtr)malloc(sizeof(struct CompressedMatrix));
resultPtr->rows = paraRows;
resultPtr->columns = paraColumns;
resultPtr->numElements = paraElements;
resultPtr->elements = (TriplePtr)malloc(paraElements * sizeof(struct Triple));
for(i = 0; i < paraElements; i ++){
resultPtr->elements[i].i = paraData[i][0];
resultPtr->elements[i].j = paraData[i][1];
resultPtr->elements[i].e = paraData[i][2];
}//Of for i
return resultPtr;
}// Of initCompressedMatrix
/**
* Print the compressed matrix.
*/
void printCompressedMatrix(CompressedMatrixPtr paraPtr){
int i;
for(i = 0; i < paraPtr->numElements; i ++){
printf("(%d, %d): %d\r\n", paraPtr->elements[i].i, paraPtr->elements[i].j, paraPtr->elements[i].e);
}//Of for i
}// Of printCompressedMatrix
/**
* Transpose a compressed matrix.
*/
CompressedMatrixPtr transposeCompressedMatrix(CompressedMatrixPtr paraPtr){
//Step 1. Allocate space.
int i, tempColumn, tempPosition;
int *tempColumnCounts = (int*)malloc(paraPtr->columns * sizeof(int));
int *tempOffsets = (int*)malloc(paraPtr->columns * sizeof(int));
for(i = 0; i < paraPtr->columns; i ++){
tempColumnCounts[i] = 0;
}//Of for i
CompressedMatrixPtr resultPtr = (CompressedMatrixPtr)malloc(sizeof(struct CompressedMatrix));
resultPtr->rows = paraPtr->columns;
resultPtr->columns = paraPtr->rows;
resultPtr->numElements = paraPtr->numElements;
resultPtr->elements = (TriplePtr)malloc(paraPtr->numElements * sizeof(struct Triple));
//Step 2. One scan to calculate offsets.
for(i = 0; i < paraPtr->numElements; i ++) {
tempColumnCounts[paraPtr->elements[i].j] ++;
}//Of for i
tempOffsets[0] = 0;
for(i = 1; i < paraPtr->columns; i ++){
tempOffsets[i] = tempOffsets[i - 1] + tempColumnCounts[i - 1];
printf("tempOffsets[%d] = %d \r\n", i, tempOffsets[i]);
}//Of for i
//Step 3. Another scan to fill data.
for(i = 0; i < paraPtr->numElements; i ++) {
tempColumn = paraPtr->elements[i].j;
tempPosition = tempOffsets[tempColumn];
resultPtr->elements[tempPosition].i = paraPtr->elements[i].j;
resultPtr->elements[tempPosition].j = paraPtr->elements[i].i;
resultPtr->elements[tempPosition].e = paraPtr->elements[i].e;
tempOffsets[tempColumn]++;
}//Of for i
return resultPtr;
}//Of transposeCompressedMatrix
/**
* Test the compressed matrix.
*/
void compressedMatrixTest(){
CompressedMatrixPtr tempPtr1, tempPtr2;
int i, j, tempElements;
//Construct the first sample matrix.
tempElements = 4;
int** tempMatrix1 = (int**)malloc(tempElements * sizeof(int*));
for(i = 0; i < tempElements; i ++){
tempMatrix1[i] = (int*)malloc(3 * sizeof(int));
}//Of for i
int tempMatrix2[4][3] = {{0, 0, 2}, {0, 2, 3}, {2, 0, 5}, {2, 1, 6}};
for(i = 0; i < tempElements; i ++){
for(j = 0; j < 3; j ++) {
tempMatrix1[i][j] = tempMatrix2[i][j];
}//Of for j
}//Of for i
tempPtr1 = initCompressedMatrix(2, 3, 4, tempMatrix1);
printf("After initialization.\r\n");
printCompressedMatrix(tempPtr1);
tempPtr2 = transposeCompressedMatrix(tempPtr1);
printf("After transpose.\r\n");
printCompressedMatrix(tempPtr2);
}// Of main
/**
* The entrance.
*/
int main(){
compressedMatrixTest();
return 1;
}// Of main
7、运行结果
After initialization.
(0, 0): 2
(0, 2): 3
(2, 0): 5
(2, 1): 6
tempOffsets[1] = 2
tempOffsets[2] = 3
After transpose.
(0, 0): 2
(0, 2): 5
(1, 2): 6
(2, 0): 3
总结:在实现压缩矩阵的转置中,代码中有多次的for循环的运用,在不同的代码块理解起来有一定的难道,所以强烈建议读者朋友们画一画图,在不能理解的地方多次跟踪。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)