2021视觉算法岗社招面经

2021视觉算法岗社招面经,第1张

个人背景:硕士毕业1年,面试的岗位大部分是计算机视觉算法工程师,少部分算法优化、部署岗。然后这个面经是去年写的,今天突然看到了,就发出来防止丢失。

社招面经

总的来说,大部分公司的技术面试都分为这几个部分:项目描述和细节提问、深度学习+目标检测算法、数据结构和算法代码及编程语言相关。下面是我面试当中问到的一些问题。

一,项目

主要是描述项目背景、项目实现的功能及使用的方法和流程,面试官会针对他感兴趣的点问一些技术细节,基本上只要能把项目流利的描述出来就问题不大。

二,深度学习、模型部署 2.1,目标检测相关

1,两阶段检测网络(Faster RCNN 系列)和一阶段检测网络(YOLO 系列)有什么区别?以及为什么两阶段比一阶段精度高?

  • 双阶段网络算法更精细,把任务分成了正负样本分类、bbox 初次回归以及类别分类和 bbox 二次回归。
  • YOLO 算法更简单粗暴,使用 backbone 对输入图像提取特征后,将特征图划分成 S × S S\times S S×S 的网格,物体的中心坐标落在哪个网络内,该网格(grid)就负责预测目标的置信度、类别和 bboxYOLOv2-v5 通过 1 × 1 1 \times 1 1×1 卷积输出特定通道数的特征图来,特征图有 N 个通道,对应的每个 grid 都会有 N 个值,分别对应置信度、类别和 bbox 坐标。

个人感觉这种问题不好回答,也没有标准答案,可能会出现你答的点不是面试官想要的。

可参考 你一定从未看过如此通俗易懂的YOLO系列(从v1到v5)模型解读 (上) 和 一文读懂Faster RCNN 文章,理解典型的双阶段检测网络和单阶段检测网络。

2,说说你对 Focal Loss 的理解,为什么能解决分类问题中的类别不平衡问题?

作者认为一阶段检测网络的精度不高的原因主要在于:极度不平衡的正负样本比例,从而导致梯度(gradient)被容易样本(easy example)的损失主导。

作者通过 Focal Loss 公式让置信度高(即容易样本)的样本的损失衰减的更厉害,从而降低容易样本的 Loss 权重,从而让模型在后期尽量去学习那些 hard 的样本。

3,如何在模型训练的时候判断是否过拟合,及模型过拟合问题如何解决?

将训练数据划分为训练集和验证集,80% 用于训练集,20% 用于验证集(训练集和验证集一定不能相交);训练的时候每隔一定 Epoch 比较验证集但指标和训练集是否一致,如果不一致,并且验证集指标变差了,即意味着过拟合。

  • 数据增强, 增加数据多样性;
  • 正则化策略:如 Parameter Norm Penalties (参数范数惩罚), L1, L2 正则化;
  • 模型融合, 比如 Bagging 和其他集成方法;
  • 添加 BN(batch normalization)层或者 dropout 层(现在基本不用);
  • Early Stopping (提前终止训练)。

4,如何在模型训练的时候判断是否欠拟合,及模型欠拟合问题如何解决?

underfitting 欠拟合的表现就是模型不收敛,即训练过程中验证集的指标比较差,Loss 不收敛。欠拟合的原因有很多种,这里以神经网络拟合能力不足问题给出以下参考解决方法:

  • 寻找最优的权重初始化方案:如 He 正态分布初始化 he_normal,深度学习框架都内置了很多权重初始化方法;
  • 使用适当的激活函数:卷积层的输出使用的激活函数一般为 ReLu,循环神经网络中的循环层使用的激活函数一般为 tanh,或者 ReLu
  • 选择合适的优化器和学习速率:SGD 优化器速度慢但是会达到最优.

5,描述以下 YOLOv3 算法及 YOLOv4、YOLOv5 的改进点,及为什么 CIoU LossIoU Loss 效果好?

YOLOv3 相比前代主要的改进点如下:

  1. BackboneDarkNet19 升级为 DarkNet53
  2. 添加了类似 FPN 的多尺度检测网络,解决小目标检测精度低的问题。
  3. 分类预测使用多标签进行类别分类,不再使用 softmax 函数。
  4. 每个 ground truth 对象只分配一个边界框。

6,描述下 RoI Pooling 过程和作用,以及 RoI Align 的改进点。

参考这篇文章 Understanding Region of Interest — (RoI Align and RoI Warp)

7,YOLOv3 的标签编码解码过程,以及正负样本采样策略。

YOLOv2 一样,YOLOv3 依然使用 K-means 聚类的方法来挑选 anchor boxes 作为边界框预测的先验框。每个边界框都会预测 4 4 4 个偏移坐标 ( t x , t y , t w , t h ) (t_x,t_y,t_w,t_h) (tx,ty,tw,th)。假设 ( c x , c y ) (c_x, c_y) (cx,cy)grid 的左上角坐标, p w p_w pw p h p_h ph 是先验框(anchors)的宽度与高度,那么网络预测值和边界框真实位置的关系如下所示:

假设某一层的 feature map 的大小为 13 × 13 13 \times 13 13×13, 那么 grid cell 就有 13 × 13 13 \times 13 13×13 个,则第 n n n 行第 n n n 列的 grid cell 的坐标 ( x x , c y ) (x_x, c_y) (xx,cy) 就是 ( n − 1 , n ) (n-1,n) (n1,n)

b x = σ ( t x ) + c x b y = σ ( t y ) + c y b w = p w e t w b h = p h e t h b_x = \sigma(t_x) + c_x \\ b_y = \sigma(t_y) + c_y \\ b_w = p_{w}e^{t_w} \\ b_h = p_{h}e^{t_h} bx=σ(tx)+cxby=σ(ty)+cybw=pwetwbh=pheth

正负样本的确定:

  • 正样本:与 GTIOU 最大的框。
  • 负样本:与 GTIOU<0.5 的框。
  • 忽略的样本:与 GTIOU>0.5 但不是最大的框。
  • 使用 t x t_x tx t y t_y ty (而不是 b x b_x bx b y b_y by )来计算损失。

8,详细讲解下 Faster RCNNMask RCNN 算法过程。

参考以下两篇文章理解 Faster RCNNMask RCNN 模型:

  • 二阶段目标检测网络-Faster RCNN论文解读
  • 二阶段目标检测网络-Mask RCNN网络理解

9,最新的目标检测算法有哪些?

YOLOv4-v5Scaled YOLOv4Anchor-free 的算法:CenterNet

10,手写 Soft NMSFocal Loss

2.2,深度学习相关

1,BN 的作用及 BN 工作流程,以及训练和推理的区别?

2,普通卷积层、分组卷积、深度可分离卷积的 FLOPs 计算公式。

3,普通卷积层、分组卷积、深度可分离卷积的 MAC 计算公式。

4,详细描述下你知道的轻量级网络:MobileNetV1、ShuffleNetv1-v2。

5,何谓正则化?

通过给模型的代价函数(损失函数)添加被称为正则化项(regularizer)的惩罚,这称为将模型(学习函数为 f ( x ; θ ) f(x; θ) f(x;θ))正则化。正则化是一种思想(策略),给代价函数添加惩罚只是其中一种方法。

6,L2 正则化(权重衰减)原理,为什么它能防止模型过拟合?系数 $\lambda $ 如何取值?

L2 正则化(权重衰减)是另外一种正则化技术,通过加入的正则项对参数数值进行衰减,得到更小的权值。当 λ \lambda λ 较大时,会使得一些权重几乎衰减到零,相当于去掉了这一项特征,类似于减少特征维度。假设待正则的网络参数为 w w wL2 正则化为各个元素平方和的 1 / 2 1/2 1/2 次方,其形式为:

L 2 = 1 2 λ ∣ ∣ w ∣ ∣ 2 2 L2 = \frac{1}{2}\lambda ||w||^{2}_{2} L2=21λw22

实际使用时,一般将正则项加入目标函数,通过整体目标函数的误差反向传播,从而实现正则化影响和指导模型训练的目的。

7,L1 正则化原理,系数 $\lambda $ 如何取值?

L1 范数: 为向量 x 各个元素绝对值之和。L1 正则化可以使权值参数稀疏,方便特征提取。

8,Pytorchconv2d 函数的参数有哪些?以及模型输出大小计算公式,并解释为什么公式是这样。

9,PytorchDataLoader 原理。

10,普通卷积过程描述下。

2.3,模型部署相关

1,浮点数在计算机中的表示方式?

2,描述下你知道的模型量化知识。

3,知识蒸馏原理,及温度系数如何取值?

4,通用矩阵乘(GEMM)优化算法有哪些?

二维矩阵相乘的 C++ 代码如下;

vector> matrix_mul(vector> A, vector> B){
    /*二维矩阵相乘函数,时间复杂度 O(n^3)
    */
    // vector> A_T = matrix_transpose(A);
    assert((*A.begin()).size()==B.size()); //断言,第一个矩阵的列必须等于第二个矩阵的行
    int new_rows = A.size();
    int new_cols = (*B.begin()).size();
    int L = B.size();
    vector> C(new_rows, vector(new_cols,0));

    for(int i=0; i

对这样的矩阵乘的算法优化可分为两类:

  • 基于算法分析的方法:根据矩阵乘计算特性,从数学角度优化,典型的算法包括 Strassen 算法和 Coppersmith–Winograd 算法。
  • 基于软件优化的方法:根据计算机存储系统的层次结构特性,选择性地调整计算顺序,主要有循环拆分向量化、内存重排等。
2.4,编程语言相关

1,虚函数原理及作用?

2,C++ 构造函数和析构函数的初始化顺序。

3,智能指针描述下?

4,static 关键字作用?

5,STL 库的容器有哪些,讲下你最熟悉的一种及常用函数。

6,vector 和 数组的区别?vector 扩容在内存中是怎么 *** 作的?

7,引用和指针的区别?

8,C++ 中定义 int a = 2,; int b = 2 和 Python 中定义 a = 2 b=3 有什么区别?

9,OpenCV 读取图像返回后的矩阵在内存中是怎么保存的?

10,内存对齐原理描述,为什么需要内存对齐?

11,散列表的实现原理?

12,虚拟地址和物理内存的关系?

三,数据结构与算法 coding

1,二分查找算法 + 可运行代码。

2,白板写链表反转。

3,包含 min 函数的栈 + 可运行代码(剑指 Offer 30. 包含min函数的栈)

4,最长回文子串 + 时间复杂度

5,TOP k 问题-最小的 K 个数 + 说下你知道哪几种解法,及各自时间复杂度

6,返回转置后的矩阵(逆时针)

7,冒泡排序及优化

8,求数组中比左边元素都大同时比右边元素都小的元素,返回这些元素的索引

9,手写快速排序

10,手写 softmax 算子 + 解释代码及衍生问题

12,无重复字符的最长子串

13,N 皇后问题

14,求最大的第 k 个数

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/2991624.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-09-23
下一篇 2022-09-23

发表评论

登录后才能评论

评论列表(0条)