由实钻资料反演地应力及井壁稳定 井壁稳定

由实钻资料反演地应力及井壁稳定 井壁稳定,第1张

在Hjk(u1,u2,ρ)=((1)j + kD1吗

j D1 kϕ(u1,u2,ρ)/ϕ(u1,u2,ρ)测量二元多项式,Ds

经营者是分化,Kjks是常用的和ϕ(u1,u2,ρ)是正常密度差异标准。

Truncating Eq。(2)在省略所有条款与j + kN4产量Charlier AA型克系列产品,

也许不是一个适当的pdf。然而,它只被用来产生一个统计量,希望是这样一些吗

勇敢和Nychka(1987)测试安定。

然而,这种方法是没有简单的比一个用于分析。

四个概率表达式P00,页,P01和赛是必需的。在AA型克

Charlier的替代品,概率是:

在R是有关区域整合和Ey1y2并表示条件期望,y2,日元吗

采取的x)就pdfϕ(u1,u2,ρ)。第三、四阶二维测量

多项式Eq。(3)在涉及产品和u1 u2的综合力量兴起四口人。

闭合表达式条件期望的在Eq。(3)中规定的表1。这是

利用母函数导出时刻在Tallis》(1961)和《数学软件包枫木。这

计算,是非常繁琐,进行了在一些方面。例如,在一系列的

参数值,截断数据生成的吉布斯采样和样品使用时刻计算。

当他们是倒退的相应的理论的时刻,共同的限制

截获和斜坡被零的一个分别是接受。

4。分数测试

分数测试是完全的标准。日志可能性N个人随机抽样是:

在我subscripts个人已经被忽略和θ是一个向量的参数。在空

假设二元probit模型是研究文章,概率,通过实验,包括(1)

β1的,β1,ρ

对吧!!!!

39 TJR - What S Up Suckaz

38

37 Go One - Single by Albert Sollitto

36 DJ Niels Van Gogh - Pornstar

35 Calle Ocho - Pitbull

34 Niko Noise - Like Paradise (DJ Mauro Vay & Luke Gf Remix)

33 Afrika Bambaataa - Pupunanny

32

31 Feel This Moment - Pitbull

30 Tony Ray Feat Catalin Maxim - Heart Of Asia (ps:本人最爱这个)

29 dj antoine - ma cherie

28 fun+janelle monae - we are young

27 Westlife - My Love

26 DJ- Gerard_Fortuny_and_Phil_Daras_Feat

25 Sasha Dith & Steve Modana feat Nadya - Ulechu

24 Kat Deluna - Whine Up

23 RIO - Like I Love You

22

21 Like Home - Nicky Romero

20 Cooler_Than_Me_Ft_Suae_2011

19 Lika - Coturo

18 Easy Tech-i m the sexy girl Dj jen edit

17 Nika Belaya feat Tim & StaniSlav House - You're My

16 Letni Chamski Podryw - Gwizdek

15

14 Love Story -Violet Light

13 Insomnia - Mike Candys

12 Mc极光 果总卡丁车轮子跑掉了

11 freezing cold - joost glazenburg

10 the sound of - simon jaxx

09 SunnyBoy - SweetStar

08 Stefan Tanz: Warum Bin Ich So Frhlich

07 Long Distance Poison – Signal 2

06 Paco Angel - Love Chord

05 Blue (Da Ba Dee) - Eiffer 65

04 莫小娘 - 蜗居

03 Movetown Feat Ray Horton - Here Comes The Sun

02 walking in the rain - sunstroke project

01 relax take it easy - mika

从上至下共39首 找到了大部分 听了2个小时我快吐了 这要再不给分。。。

第29卷 增1

岩石力学与工程学报 Vol29 Supp1

2010年5月 Chinese Journal of Rock Mechanics and Engineering May,2010

由实钻资料反演地应力井壁稳定

赵海峰,陈 勉

(中国石油大学 石油工程教育部重点实验室,北京 102249)

摘要:目前确定石油工程中地应力的方法均存在各自的局限性,为了得到直接反应地应力大小和方向的信息,提出一种基于实钻资料确定地应力的新方法,不将井眼看作理想的圆筒,而是通过力学分析建立井壁围岩的变形程度与岩石物理力学性质、地应力、孔隙压力及钻井液密度的关系,在此基础上由钻井液录井和常规测井,反演出地应力及孔隙压力,并进一步计算井壁坍塌和破裂压力。研究发现,破裂压力计算值与实测值符合较好,而反演得到的孔隙压力与实用钻井液密度符合,说明该方法合理可行。若结合随钻测量,该方法可实现地应力及井壁稳定的实时预测,应用前景广阔。

关键词:岩石力学;地应力;坍塌压力;破裂压力;孔隙压力;反演

中图分类号:TU 45 文献标识码:A 文章编号:1000–6915(2010)增1–2799–06

INVERSE ANALYSIS FROM ACTUAL DATA TO DETERMINE

GEOSTRESS AND WELLBORE STABILITY

ZHAO Haifeng,CHEN Mian

(Key Laboratory of Petroleum Engineering,MOE,China University of Petroleum,Beijing 102249,China)

Abstract:A new method based on actual data to determine geostress is introduced Without the traditional assumption that wellbore is cylindrical,the relationship among wellbore deformation,rock mechanical properties,geostress,pore pressure and mud density is established by using dual media elastic mechanics Using this relationship,geostress and pore pressure are inverted from mud log and conventional log Then collapse pressure and fracture pressure are calculated The results show that the calculated fracture pressure is in good agreement with the actually measured value,and the inverted pore pressure is in agreement with the practical mud density The agreement verifies the rationality of this new method It is a peakthrough to determine earth pressure and pore pressure from actual mud log and conventional log Due to the basis of rigorous mechanical model and actual data,this new method has high degree of accuracy With measurements while drilling,this method can predict pore pressure,geostress and wellbore stability at real time So the method may be wildly used

Keywords:rock mechanics;geostress;collapse pressure;fracture pressure;pore pressure;inverse analysis

1 引 言

地应力是客观存在的一种自然力,它影响着油

收稿日期:2008–11–12;修回日期:2009–03–11

基金项目:国家高技术研究发展计划(863)项目(2006AA06A109–1–1–1)

气勘探和开发的过程。在油气田钻井和开发中,掌握油气储集区域构造应力的大小和方位,可以进行油气田开发井网布置和优选钻井泥浆的密度来稳定井壁,减少或避免诸如漏、喷、塌、卡等事故造成

作者简介:赵海峰(1980–),男,博士,2002年毕业于北京大学力学与工程科学系应用力学专业,现任讲师,主要从事石油工程和岩石力学等方面的

• 2800 • 岩石力学与工程学报 2010年

的严重经济损失和人身事故等[1

,2]

。目前石油工程

中确定地应力的方法主要有各种岩芯试验、水力压力曲线解释、测井解释以及地震属性反演,这些方法均具有各自的优点和局限。

岩芯试验是公认的准确确定深层地应力的方法之一,针对各种地层和岩芯条件分别有围压Kaiser效应法、声速各向异性与Kaiser效应复合法等,用于超深井、薄层岩芯等特殊条件[3

~6]

。岩芯

试验具有精度高的优点,但只能在钻后进行,取得的数据点有限而难以对整个井段的地应力进行精确描述,且花费较大。水力压裂法测量地应力最初是从石油开采过程中,对油井实施水力压裂增产技术发展而来的深部岩体地应力测量方法,随后水力压裂地应力测量技术在世界范围内得到了推广和应用[7

~11]

。但压裂往往只能在需要改造的储层进行,

所以作为地应力测量方法局限较大。测井解释是目前广泛应用的全井段地应力分布计算方法,包含较多的经验关系,在准确获取有关岩石力学参数计算系数的基础上可以得到理想结果[12

~15]

。测井解释最

大的缺点是只能在钻后进行,指导钻井的时效性较差,且该方法并未使用井眼变形、实用钻井液密度等直接反映地应力大小和方向的钻井参数。地震属性反演是目前较新的一种在钻前对地应力和井壁稳定进行预测的方法[16],由于该方法只使用预测地层的地震资料而不涉及实钻资料,加上反演的分辨率限制,仅能供钻井设计参考。

地层钻开后,井眼的变形程度与地应力及孔隙压力密切相关,本文基于双重介质d性力学得到井眼变形程度与岩石物理力学性质、地应力、孔隙压力及钻井液密度的关系,在此基础上由钻井液录井和常规测井,反演出地应力及孔隙压力,并进一步计算井壁坍塌和破裂压力。研究发现,破裂压力计算值与实测值符合较好,而反演得到的孔隙压力与实用钻井液密度符合,说明该方法合理可行。本文提出的方法与随钻测量技术结合可以进行地应力及井壁稳定的实时预测,对钻井风险控制意义较大,应用前景广阔。

2 直井实钻反演理论

地层总是处于三轴应力作用,故可用3个方向的主应力来表示,即最大水平主应力σH,最小水平

地应力σh和上覆压力σv。地层钻开后应力重新分布,井眼处在钻井液柱压力和原地应力的联合作用下,若假定地层为d性体且满足平面应变假定,井壁钻井液滤失满足达西定律,则井眼周围地层的应力分布可由叠加原理得到

r2i(σH+σh)⎛r2

σi⎞⎫

r=r2pi+2⎜⎝1−2

⎟σH−σh

r

+

2⋅⎪⎪ ⎛⎪

⎜⎝1+3r4i4r2i⎞⎪r4−r2⎟⎠cos(2θ)+

⎪⎪ δ⎡⎢α(1−2υ)⎛⎪−υ)⎜⎝1−r2i⎞⎤

r2⎟⎠−φ⎥(p⎪⎦

i−pp)

⎣2(1⎪⎪

σr2σ2i(H+σh)⎛ri⎞(σH−σh)

⎪θ=−r2pi+2⎜⎝1+r2⎟⎠−

2⋅⎪⎪

4

⎛⎜⎡2⎪

⎝1+3ri⎞

α(1−2υ)⎛ri⎞⎤⎬r4⎟⎠cos(2θ)+δ⎢⎣2(1−υ)⎜⎝1+r2⎟⎠−φ⎥⋅⎪

⎦⎪

(p⎪

i−pp)⎪

2

⎪σ=σ⎛r⎞

⎪zv−2υ(σH−σh)⎜i⎝r⎟⎠cos(2θ)+⎪

δ⎡⎢

α(1−2υ)⎤⎪

⎪⎣1−υ−φ⎥⎦

(pi−pp)⎪τσ3r4⎪

h−σH⎛i2r2i⎞rθ=2⎜⎝1−r4+r2⎟⎠sin(2θ)⎪

⎪⎭ (1)

式中:ri为井眼半径;r为极坐标半径;pi为井内压力;pp为地层孔隙压力;θ为矢径与最大地应力方向的夹角;δ为与井壁有关的参数,当井壁有渗透时,δ=1,当井壁不渗透时,δ=0;υ为泊松比;φ为孔隙度;α为有效应力系数。

当ri= r时,可得无限大地层平面内直井井眼周围的应力分布为

σr=pi−δφ(pi−pp)

σ+[1−2cos(2θ)]σ⎪

θ=−piH+[1+2cos(2θ)]σh+⎪

δ⎢

(1−2υ)⎪⎡α⎣1−υ−φ⎤

⎪⎥⎦

(pi−pp)⎪⎬(2) σ=σ⎪

zv−2υ(σH−σh)cos(2θ)+⎪

δ⎡⎢

α(1−2υ)⎣1−υ−φ⎤⎥⎦(pi−pp)⎪⎪⎭井壁上的差应力(σθ−σr)值决定了井壁是否发生剪切破坏,当θ=π/2或3π/2时,σθ−σr值

第29卷 增1 赵海峰,等 由实钻资料反演地应力及井壁稳定 • 2801 •

达到最大值,即在点B,D处达到σθ-σr的最大值,井眼极坐标系见图1。图1中的A,B,C,D表示极角分别为0°,90°,180°及270°的井壁点。由式(2)和莫尔–库仑准则可以得到临界的坍塌压力[1]为

σH

A

σθ

r h

D

ri

B

σh

C

σH

图1 井眼极坐标系

Fig1 Will bore polar coordinates

2

ρη(3σH−σh)−2c0β+αpp(β−1)

b=

(β2+η)H

×100 (3)

其中,

β=cot⎜⎛

45D−

ϕ⎞

2⎟⎠

式中:H为井深(m),ρb为坍塌压力(g/cm3),c0为岩石的黏聚力(MPa),ϕ为内摩擦角(°),pp为孔隙压力,η为应力非线性修正系数。

应该指出,式(3)是保持井壁上该地层不允许有任何程度坍塌时的密度值。如果允许井眼有一定的井径扩大率,井眼形状为椭圆形,如图2所示,此 时式(2)应该重新求解。设描述井径扩大的变量

m=(R−ri)/(R+ri)(ri为钻头半径,R为井径扩大处的半径),认为井壁应力状态为平面应变,由d性理论的复势解法,其应力分布由以下5部分叠加得到:

(1) 液柱压力pi引起的应力

椭圆孔边受内压的平面应变问题解为

σr=pi

σ=p3m2

−1−2mcos(2ϕ)⎪⎪

θi1+m2−2mcos(2ϕ)⎪

⎬ (4)

σ4m2−4mcos(2ϕ)⎪

z=υpi

1+m2−2mcos(2ϕ)⎪⎭

σH

A

σh

D

ri ϕ R

B

σh

C

σH

图2 井壁崩落椭圆

Fig2 Elliptic wellbore caused by collapse

(2) 最大水平地应力σH引起的应力

无限远处受压缩的平面应变椭圆孔边缘应力

1−m2σ=σ−2m+2cos(2ϕ)⎫

θH1+m2−2mcos(2ϕ)⎪

⎬ (5)

σz=υσθ⎪⎭(3) 最小水平地应力σh引起的应力

无限远处受压缩的平面应变椭圆孔边缘应力为

σσ1−m2+2m−2cos(2ϕ)⎫

θ=h1+m2−2mcos(2ϕ)⎪

⎬ (6)

σz=υσθ⎪⎭(4) 上覆地层压力σv引起的应力

σz=σv (7)

(5) 钻井液渗流效应

当钻井液造壁性能不佳时,在井内和地层间将发射液体渗流,视井壁地层为孔隙介质,介质中流动满足达西定理,则井内径向渗流产生在井壁上的附加应力为

σr=−φ(pi−pp)

⎫⎪

σ=σ⎡α(1−2υ)⎤

⎬ (8) θz=⎢⎣1−υ−φ⎥⎦(pi−pp)⎪

综合以上结果得到允许一定井径扩大率的井壁围岩应力分布

• 2802 • 岩石力学与工程学报 2010年

σθ=⎪

223m−1−2mcos(2ϕ)1−m−2m+2cos(2ϕ)⎪pi+σH+⎪1+m2−2mcos(2ϕ)1+m2−2mcos(2ϕ)⎪

⎪1−m2+2m−2cos(2ϕ)⎡α(1−2υ)⎤

σh+⎢−φ⎥(pi−pp)⎪2

⎪1+m−2mcos(2ϕ)⎣1−υ⎦

σz=⎪

4m2−4mcos(2ϕ)1−m2−2m+2cos(2ϕ)⎪

+⎪+υσHυpi

1+m2−2mcos(2ϕ)1+m2−2mcos(2ϕ)⎪

⎪1−m2+2m−2cos(2ϕ)⎡α(1−2υ)⎤⎪+σv+⎢−φ⎥⋅υσh

2

1+m−2mcos(2ϕ)⎪⎣1−υ⎦

(pi−pp)⎭

σr=pi−φ(pi−pp)

β=ri/R

式(10),(11)中的地应力可用石油大学六五模式计算,这样可以把式(10)或式(11)写成如下形式:

ρb=f(H,β,υ,σv,C0,A,ξ1,ξ2,Pp) (12)

式(12)中除了孔隙压力Pp和最大和最小水平构造应力系数ξ1,ξ2外,其余参数可由相关测井数据

计算出。计算过程取若干个地层深度,组建关于ξ1,

ξ2和Pp的方程组,利用最小二乘法求拟合解。

3 应用实例

HB1井是中石化在川东北地区部署的一口直探

(9)

要计算允许一定井径扩大率的泥浆密度公式,应用式(9)和莫尔–库仑准则可以得到。由于表达式复杂,这里不列出完整的表达式。忽略钻井液渗流效应的一阶近似表达式和考虑钻井液滤失的一阶近似表达式分别为

井,设计井深为6 100 m。该井地层年代久远,地层埋藏深,地层可钻性差,研磨性高,裂缝发育且岩芯易破碎。地层压力系统和地应力分布复杂,钻前预测偏差较大,钻井过程中出现多次井壁失稳、井漏及井控事故,井眼质量差。应用实钻资料反演方法对该井分层进行地应力及井壁稳定计算。计算过程:以上沙庙组为例,取9个代表性点,组建关于最大构造应力系数、最小构造应力系数和孔隙压力的9个方程,计算数据见表1。

利用最小二乘法求拟合解,得到最大构造应力系数、最小构造应力系数和孔隙压力。实钻反演结果见表2。

基于以上反演的构造应力系数和孔隙压力数据,可以计算出地应力、坍塌压力及破裂压力剖面,如图3,4所示。从图4可以看出,破裂压力的计算值与现场测量值符合,而孔隙压力与实用泥浆密度符合,说明该反演方法的合理性。

ρb=ρb=

ηP−2C0A+αpp(A−1)−QA

×100 (10)

β2(A2+η)H

2

22

η[P−(K−φ)pp]−2C0A+(φpp−Q)A

×100

β2[(1+φ)A2−η(K−1−φ)]H

(11)

其中,

σ+σhσ−σhP=H(1+β2)+H(1+3β2)

2

2

Q=

σH+σh

2

(1−β2)−

σH−σh

2

(1−4β2+3β4)

α(1−2υ)K=

1−υ

表1 计算数据 Table1 Calculation data

井深/m 1 006 1 103 1 206 1 254 1 390 1 506 1 616 1 750 1 820

泥浆密度/(g·cm3)

井径扩大率 0097 71 0416 57 0517 71 0517 71 0510 86 0492 57 0507 43 0493 71 0440 00

参数β 0910 980705 930658 890658 890661 880669 980663 380669 470694 44

泊松比 0230 00 0220 39 0240 13 0237 66 0233 02 0228 20 0244 38 0251 24 0249 33

上浮压力/(g·cm3)

黏聚力/MPa 14239 74 6786 23 11554 20 13111 18 10840 32 13516 15 10950 26 4968 73 8197 24

内摩擦角/(°) 29367 30 30110 38 29664 38 29497 00 29737 12 29451 32 29726 06 30259 38 29987 44

参数A 1710 17 1735 91 1720 39 1714 63 1722 91 1713 06 1722 53 1741 14 1731 61

126 126 127 129 128 129 128 130 127

2465 37 2427 89 2394 00 2402 51 2412 35 2407 45 2404 89 2404 02 2393 29

第29卷 增1 赵海峰,等 由实钻资料反演地应力及井壁稳定 • 2803 •

表2 实钻反演结果

Table 2 Inversion results from actual drilling data

地层

最大构造 最小构造 孔隙压力

应力系数ξ应力系数ξ-2 -

1 /(10MPa·m)

上沙庙组 048 005 115 侏罗系

下沙庙组 042 005 138 千佛崖组 037 004 127 自流井组 033 005 129 须家河 030 005

125 三叠系

雷口坡组 037 004 144 嘉陵江组 036 005 206 飞仙关组 035

006

220 上统 033 008

221 二叠系

茅口组 035 007 193 栖霞组 梁山组

034 005

195 石炭系 黄龙组 030 007 217 志留系

龙马溪组 030

006

215

m/度深

图3 地应力梯度剖面 Fig3 In-situ stress gradient profile

井径扩大率

坍塌压力 破裂压力 实用泥浆密

/(g·cm-

3)/(g·cm-

3) /(g·cm-3) 度/(g·cm-3)

实测值

m/度深实测值

实测值

图4 坍塌压力及破裂压力当量密度剖面

Fig4 Collapse pressure and fracture pressure equivalent

density profile

4 结 论

本文基于双重介质d性力学得到井眼变形程度与岩石物理力学性质、地应力、孔隙压力及钻井液密度的关系,在此基础上由钻井液录井和常规测井,

反算出地应力及孔隙压力,并进一步计算井壁坍塌压力和破裂压力,得到如下结论:

(1) 井眼的变形程度与地应力及孔隙压力密切

• 2804 • 岩石力学与工程学报 2010年

相关,从井眼变形出发进行地应力的反问题求解是完全可行的。

(2) 井眼钻开后若发生井眼失稳或垮塌,井壁

应力分布宜采用本文介绍的椭圆孔应力分布,而不能再使用井眼为理想圆筒的假设。

(3) 本文介绍的理论是针对直井而言的,反演

的结果也只包含地层压力和地应力数值,不能得到地应力的方位。如果对定向井、水平井进行类似的随钻反演研究,因为坍塌压力与井斜角及井斜方位有关,可以同时反演出地应力大小及其方位。

参考文献(References):

[1]

陈 勉,金 衍,张广清 石油工程岩石力学[M] 北京:科学出版社,2008(CHEN Mian,JIN Yan,ZHANG Guangqing Petroleum related rock mechanics[M] Beijing:Science Press,2008(in Chinese)) [2]

ZOBACK M D,BARTON C A,BRUDY M Determination of stress orientation and magnitude in deep wells[J] International Journal of Rock Mechanics and Mining Sciences,2003,40(10):1 049–1 076 [3]

石 林,张旭东,金 衍,等 深层地应力测量新方法[J] 岩石力学与工程学报,2004,23(14):2 355–2 358(SHI Lin,ZHANG Xudong,JIN Yan,et al New method for measurement of in-situ stress at great depth[J] Chinese Journal of Rock Mechanics and Engineering,2004,23(14):2 355–2 358(in Chinese)) [4]

金 衍,陈 勉,郭凯俊,等 复杂泥页岩地层地应力的确定方法研究[J] 岩石力学与工程学报,2006,25(11):2 287–2 291(JIN Yan,CHEN Mian,GUO Kaijun,et al Study on determination method of in-situ stress for complex silt formations[J] Chinese

Journal of Rock Mechanics and Engineering,2006,25(11):2 287– 2 291(in Chinese)) [5]

张广清,陈 勉,赵振峰 Kaiser取样偏差对深层油藏地应力测试的影响分析[J] 岩石力学与工程学报,2008,27(8):1 682–1 687 (ZHANG Guangqing,CHEN Mian,ZHAO Zhenfeng Research on influence of Kaiser sampling deviation on stress measurements at great depth[J] Chinese Journal of Rock Mechanics and Engineering,2008,27(8):1 682–1 687(in Chinese)) [6]

LAVROV A The Kaiser effect in rocks:principles and stress estimation techniques[J] International Journal of Rock Mechanics and Mining Sciences,2003,40(2):151–171 [7]

侯明勋,葛修润,王水林 水力压裂法地应力测量中的几个问题[J] 岩土力学,2003,24(5):840–844(HOU Mingxun,GE Xiurun,

WANG Shuilin Discussion on application of hydraulic fracturing method to geostress measurement[J] Rock and Soil Mechanics,2003,24(5):840–844(in Chinese)) [8]

SUNG O C A decade′s hydro fracturing experiences of in-situ stress measurement for tunnel construction in Korea[J] Chinese Journal of Rock Mechanics and Engineering,2007,26(11):2 200–2 206 [9]

RUTQVIST J,CHIN F U T,STEPHANSSON O Uncertainty in maximum principal stress estimated from hydraulic fracturing measurements due to the presence of the induced fracture[J] International Journal of Rock Mechanics and Mining Sciences,2000,37(1–2):107–120

[10] ITO T,EVANS K,KAWAI K,et al Hydraulic fracture reopening

pressure and the estimation of maximum horizontal stress[J]

International Journal of Rock Mechanics and Mining Sciences,1999,36(6):811–826

[11] BRUDY M,ZOBACK M D,FUCHS K,et al Baumgartner

Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes:implications for crustal strength[J] Journal of Geophysical Research,1997,102(B8):18 453–18 475

[12] HUDSON J A,CORNET F H,CHISTIANSSON R ISRM suggested

method for rock stress estimation—part I:strategy for rock stress estimation[J] International Journal of Rock Mechanics and Mining Sciences,2003,40(7/8):991–998

[13] FJAER E,HOLT R M,HORSRUD P Petroleum related rock

mechanics[M] Amsterdam:Elsevier Press,1992

[14] 曾联波,王贵文 塔里木盆地库车山前构造带地应力分布特征[J]

石油勘探与开发,2005,32(3):59–60(ZENG Lianbo,WANG Guiwen Distribution of earth stress in Kuche thrust belt,Tarim Basin[J] Petroleum Exploration and Development,2005,32(3):59–60(in Chinese))

[15] 黄继新,彭仕宓,王小军,等 成像测井资料在裂缝和地应力研

究中的应用[J] 石油学报,2006,27(6):65–69(HUANG Jixin,PENG Shimi,WANG Xiaojun,et al Applications of imaging logging data in the research of fracture and ground stress[J] Acta Petrolei Sinica,2006,27(6):65–69(in Chinese))

[16] 吴 超,陈 勉,金 衍 基于地震属性技术的井壁稳定随钻预

测新方法[J] 中国石油大学学报(自然科学版),2007,31(6):141–146 (WU Chao,CHEN Mian,JIN Yan A new method of predicting borehole stability while drilling based on seisic attribute technology[J] Journal of China University of Petroleum(Natural Science),2007,31(6):141–146(in Chinese))

Nanchang (: 南昌; pinyin: Nánchāng) is the capital of Jiangxi Province in southeastern China Nanchang is famous for its scenic lakes, mountains, rich history and cultural sitesIn June 2006, Nanchang is appraised as World Top Ten Dynamic Cities by US News Weekly

Contents [hide]

1 Geography

2 Demographics

3 History

4 Administration

5 Economy

6 Transportation

61 Rail

62 Air

63 Road

64 Water

7 Landmarks

8 Colleges and universities

9 References

10 External links

[edit]Geography

Nanchang is located 60 km south of the Yangtze River and is situated on the right bank of the Gan River just below its confluence with the Jin River and some 40 km south of its discharge into Poyang Lake

Nanchang has a humid subtropical climate with four distinct seasons Winters are short and fairly mild (average high in January is 9 degrees C or 48F), but with occasional frosts and snow is not unheard of Summer is long and humid, with amongst the highest temperatures in China (average 34C or 93F in July) Rain falls throughout the year, but is heavier in the summer months

[edit]Demographics

Nanchang has a population of 3,934,445 people and a metropolitan area consisting of 4,990,184 people

[edit]History

The city - called Gàn (赣) - was founded and first walled in 201 BC (during the early Han dynasty), when the county town was given the name Nanchang It was also the administrative seat of a mandery, Yuzhang In 589 (during the Sui dynasty) this mandery was changed into a prefecture named Hongzhou (洪州), and after 763 it became the provincial center of Jiangxi, which was then beginning the rapid growth that by the 12th century made it the most populous province in China

In 653 AD, the Tengwang Pavilion was constructed In 675 AD, Wang Bo (王勃) wrote the classic "Tengwang Ge Xu" The building as well as the city became celebrated for Wang's introduction article and the author is known to all -speaking population by this masterpiece The Pavilion has been destroyed and rebuilt several times throughout China's history In its present form, Tengwang Pavilion was reconstructed in the 1980s after being destroyed in 1929 during the Civil War

In 959, under the Southern Tang regime, it became Nanchang superior prefecture and also the southern capital After the conquest by the Song regime in 981 it reverted to the name Hongzhou In 1164 it was renamed Longxing superior prefecture, which name it retained until 1368 At the end of the Yuan (Mongol) period (1279–1368), it became a battleground between Zhu Yuanzhang, the founder of the Ming dynasty (1368–1644), and the rival local warlord, Chen Youliang At the beginning of the 16th century it was the power base from which Zhu Chenhao, the prince of Ning, launched a rebellion against the Ming regime

In the 1850s it suffered considerably as a result of the Taiping Rebellion (1850–64), and its importance as a mercial center declined as the overland routes to Canton were replaced by coastal steamship services in the latter half of the 19th century Nanchang has, however, remained the undisputed regional metropolis of Jiangxi

On August 1, 1927, Nanchang was the site of one of a series of insurrections anized by the munist Party The Nanchang Uprising, led by pro-munist Kuomintang officers under Russian direction, succeeded in holding the city for only a few days, and provided a core of troops and a method of anization from which the People's Liberation Army (PLA) later developed

In 1939, the Battle of Nanchang, a ferocious battle between the National Revolutionary Army and the Japanese Imperial Japanese Army in the Second Sino-Japanese War took place

Satellite image of Nanchang City in JiangXi

In 1949 Nanchang was still essentially an old-style administrative and mercial city, with little industry apart from food processing; it had a population of about 275,000 Nanchang first acquired a rail connection in 1915, when the line to Jiujiang, a port on the Yangtze River, was opened Several other rail links have since been opened After World War II a line was pleted to Linchuan and Gongqi in the Ru River Valley to the south-southeast

Since 1949 Nanchang has been extensively industrialized It is now a large-scale producer of cotton textiles and cotton yarn Papermaking is also a large industry, as is food processing (especially rice milling) Heavy industry began to be important in the mid-1950s A large thermal-power plant was installed and uses coal brought by rail from Fengcheng, to the south A machinery industry also grew up, at first mainly concentrating on the production of agricultural equipment and diesel engines Nanchang then became a center of the automotive industry, producing trucks and tractors and also such equipment as tires An iron- elting plant helping to supply local industry was installed in the later 1950s There is also a large chemical industry, producing agricultural chemicals and insecticides as well as pharmaceuticals

[edit]Administration

Subdivisions of Nanchang

Nanchang Buildings

Donghu District (东湖区)

Xihu District (西湖区)

Qingyunpu District (青云谱区)

Wanli District (湾里区)

Qingshanhu District (青山湖区)

Nanchang County (南昌县)

Xinjian County (新建县)

Anyi County (安义县)

Jinxian County (进贤县)

[edit]Economy

Nanchang is a regional hub for agricultural production in Jiangxi Province The yield of grain was 16146 million tons in 2000 Products such as rice and oranges are economic staples The Ford Motor pany has a plant in Nanchang, assembling the Ford Transit van as part of the Jiangling Motor joint venture[1] Nanchang also is a center of production for traditional medicine and pharmaceuticals

The GDP of Nanchang in 2008 was 166 billion Yuan The GDP per capita was 36,105 Yuan The total value of imports and exports was 34 billion US dollars The total financial revenue was 23 billion Yuan[2]

[edit]Transportation

Nanchang International Airport

Nanchang Railway Station

[edit]Rail

Nanchang has extensive railway infrastructure which connects to many important cities in other provinces The Beijing-Jiulong Railway and Shanghai-Kunming Railway (formerly Zhe-Gan Railway, literally Zhejiang-Jiangxi Railway) both meet at Nanchang making Nanchang one of the most important transport hubs in Southern China It is also the home to the Nanchang Bureau of Railways, which operates the majority of the railway work in the provinces of Jiangxi and Fujian

From 2007, Nanchang is also connected with neighboring cities Hangzhou, Changsha and Shanghai with CRH (China Railway High-speed)

Nanchang Changbei International Airport (南昌昌北国际机场)

Beijing-Jiulong Railway (京九铁路)

Shanghai-Kunming Railway (沪昆铁路)

[edit]Air

Nanchang Changbei International Airport (KHN) built in 1996 is the main international airport It is situated in Lehua Town, 26 kilometres north of the CDB area Changbei International Airport is the only one in Jiangxi Province which has an international air route The airport is connected to major mainland cities such as Beijing, Shanghai, Guangzhou, Shenzhen and Haikou[3]

[edit]Road

The road transport infrastructure in Nanchang is extensive A number of national highways cross through the city They are the No105 National roads No105 from Beijing to Zhuhai, No320 from Shanghai to Kunming, and No316 from Fuzhou to Lanzhou The major transport panies that operate in Nanchang are the Chang'an Transport pany Limited, the Nanchang Long-distance Bus Station, and the Xufang Bus Station

The Nanchang Long-distance Bus Station serves long distance routes to Nanjing, Shenzhen, Hefei and other cites outside Jiangxi Province The Xufang Bus Station operates routes to cities, towns and counties within Jiangxi Province [3]

[edit]Water

Nanchang is situated on the Gan River, the Fu River, Elephant Lake, Qingshan Lake, and Aixi Lake Hence the water routes for Nanchang critically important for the economy, trade and shipping Nanchang Port is the biggest port on the Gan River Passengers can take Nanchang Port and travel by boat to the Jinggang Shan and Tengwang Pavilion There are passenger ships that also visit Poyang Lake, Stone Bell Hill, Poyang Lake Bird Protection Area, Dagu Hill and other attractions

[edit]Landmarks

The Pavilion of Prince Teng is a building in the north west of the city of Nanchang, in Jiangxi province, China

The Star of Nanchang Ferris Wheel

Nanchang is known for: The Tengwang Pavilion, a towering pavilion dating to 653,on the east bank of the Gan River and is one of "the Four Great Towers of China"

Bayi Square (Literally Aug 1st Square aka People's Square), whose size is approximately 78,000 m2,[4] the second largest public square in China, after Beijing's Tiananmen Square

Poyang Lake, the largest fresh water lake in China, it is also called "the Migrator Birds Paradise"

It is also home to the Star of Nanchang, which was the world's tallest Ferris wheel from 2006-2008[5]

The Jiangxi Provincial Museum and Bada Shanren Exhibition Hall

Also famous for Bayi Grand Bridge, the first grand bridge in Nanchang It facilitates many traffics in the cars getting cross the river

[edit]Colleges and universities

Jiangxi University of Finance and Economics (江西财经大学) (founded 1923)

Nanchang University (南昌大学)

Jiangxi Normal University (江西师范大学)

Jiangxi University of Science and Technology (江西理工大学)

Jiangxi Agricultural University (江西农业大学)

East China Jiaotong University (华东交通大学)

Nanchang Institute of Aeronautical Technology (南昌航空工业学院)

Jiangxi Institute of Traditional Medicine (江西中医学院)

Nanchang Institute of Technology (南昌工程学院)

Jiangxi Science & Technology Teachers' College (江西科技师范学院)

Note: Institutions without full-time bachelor programs are not listed

大熊猫街头卖艺,它的黑眼圈英语怎么说?,What has o black eyes, a short fuzzy tail, ears that look like pom-poms ?

是谁有两只黑眼睛,短短的、毛茸茸的尾巴,耳朵像绒球?

没错,就是我们的国宝大熊猫了!

前一段时间,一段大熊猫70年代街头卖艺影像曝光,想不到我们的国宝也有这样的才华。,大熊猫已在地球上生存了至少800万年,是中国特有物种,所以称为“中国国宝”。

大熊猫由于其萌萌的姿态,憨憨的动作一直受到全世界人民的喜爱。很多国家都想从中国要一只大熊猫回去饲养,在建国初的时候,国家陆续向英,美等国赠送了几只大熊猫。但是大熊猫在其他国家很难适应当地的气候,经常送出去的大熊猫因为种种原因出现了厌食,思乡,甚至死亡的现象。

所以从1984年起,中国就将赠送的方式改为租借。并不是说任何一个国家拿钱过来就可以将熊猫租借走,首先最重要的一个因素就是这个国家要和中国建立外交关系,而且每年要向中国支付100万美元的租借费用,而这个费用会用到国内其他熊猫的饲养。,提到大熊猫,最引人注目的就是他的眼睛了,有网友去掉了熊猫的黑眼圈以后,熊猫的颜值就大幅下降了,可见烟熏妆确实有使眼睛看上去变大 的作用。,那么熊猫眼该怎么说呢?

“熊猫眼”其实就是黑眼圈,,dark circle 黑眼圈,例句:,Don't stay up too late, you'll have dark circles under your eyes!

别熬夜了,你会有黑眼圈的!,说起黑眼圈,我们再补充一些关于眼睛的非常有意思的表达

抛媚眼make eyes at someone

to flirt with one by making suggestive eye contact

向某人使了一个眼色,尤其是含情脉脉的那种

例句:

Is that girl making eyes at me, or am I just imagining it

那个女孩在向我抛媚眼,还是我只是在想象?

意见一致see eye to eye : to agree fully with someone

意思是两个人互相认同彼此对某事的看法,意见一致。不过用于否定的情况偏多。

例句:

He is looking for a new job as he does not see eye to eye with his manager

因为和经理意见不合,他正在找一份新工作。

,想知道卡卡老师的发音秘诀关注微信公众号 卡卡课堂

KY981商标总申请量1件

其中已成功注册0件,有1件正在申请中,无效注册0件,0件在售中。

经八戒知识产权统计,KY981还可以注册以下商标分类:

第1类(化学制剂、肥料)

第2类(颜料油漆、染料、防腐制品)

第3类(日化用品、洗护、香料)

第4类(能源、燃料、油脂)

第5类(药品、卫生用品、营养品)

第6类(金属制品、金属建材、金属材料)

第7类(机械设备、马达、传动)

第8类(手动器具(小型)、餐具、冷兵器)

第9类(科学仪器、电子产品、安防设备)

第10类(医疗器械、医疗用品、成人用品)

第11类(照明洁具、冷热设备、消毒净化)

第12类(运输工具、运载工具零部件)

第13类(军火、烟火、个人防护喷雾)

第14类(珠宝、贵金属、钟表)

第15类(乐器、乐器辅助用品及配件)

第16类(纸品、办公用品、文具教具)

第17类(橡胶制品、绝缘隔热隔音材料)

第18类(箱包、皮革皮具、伞具)

第19类(非金属建筑材料)

第20类(家具、家具部件、软垫)

第21类(厨房器具、家用器皿、洗护用具)

第22类(绳缆、遮蓬、袋子)

第23类(纱、线、丝)

第24类(纺织品、床上用品、毛巾)

第26类(饰品、假发、纽扣拉链)

第27类(地毯、席垫、墙纸)

第28类(玩具、体育健身器材、钓具)

第29类(熟食、肉蛋奶、食用油)

第30类(面点、调味品、饮品)

第31类(生鲜、动植物、饲料种子)

第32类(啤酒、不含酒精的饮料)

第33类(酒、含酒精饮料)

第34类(烟草、烟具)

第35类(广告、商业管理、市场营销)

第36类(金融事务、不动产管理、典当担保)

第37类(建筑、室内装修、维修维护)

第38类(电信、通讯服务)

第39类(运输仓储、能源分配、旅行服务)

第40类(材料加工、印刷、污物处理)

第41类(教育培训、文体活动、娱乐服务)

第42类(研发质控、IT服务、建筑咨询)

第43类(餐饮住宿、养老托儿、动物食宿)

第44类(医疗、美容、园艺)

第45类(安保法律、婚礼家政、社会服务)

以上就是关于哪位高人能我翻译一下全部的内容,包括:哪位高人能我翻译一下、QQ 312 360 981 空间 所有背景音乐 名字叫什么。、【由实钻资料反演地应力及井壁稳定】 井壁稳定等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/8810656.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-21
下一篇 2023-04-21

发表评论

登录后才能评论

评论列表(0条)

保存