大数据处理的五大关键技术及其应用

大数据处理的五大关键技术及其应用,第1张

中国以电子设备为主业的有限公司

新华三集团(简称新华三)是新IT解决方案提供商,提供新IT解决方案和产品的研发、生产、咨询、销售及服务,拥有H3C 品牌的全系列服务器、存储、网络、安全、超融合系统和IT管理系统等产品,能够提供大互联、大安全、云计算、大数据和IT咨询服务在内的IT解决方案。新华三也是HPE 品牌的服务器、存储和技术服务的中国独家提供商。2015年新华三销售收入超过200亿人民币。

2018年6月,中科院计算机网络信息中心、紫光旗下新华三、紫光云数在京签署战略合作协议,宣布共同成立“中国 科技 云技术发展研究院”。

基本信息

新华三集团以技术创新为核心引擎,新华三40%的员工为研发人员,专利申请总量超过6,500 件,其中85%以上是发明专利。2015年新华三申请专利841件,平均每个工作日超过3件。

以客户需求为发展方向,新华三聚焦新IT技术领域,打造高度融合的新IT生态圈,帮助各行各业实现传统IT向新IT的融合与演进,推动全产业的转型、升级与变革。

新华三长期服务于运营商、政府、金融、电力、能源、医疗、教育、交通、互联网、制造业等各行各业,将卓越的IT创新与全 社会 共同分享,加速 社会 向信息化和智慧化的迈进步伐,助推新经济快速发展。

服务全球,新华三产品已广泛应用于近百个国家和地区,尤其是欧洲和北美市场,客户包括 沃达丰 、 西班牙电信 、瑞士电信、 可口可乐 、梦工厂、法国国铁、 俄罗斯联邦储蓄银行 、三星电子、巴西世界杯等。

新华三以新IT力量引领时代变革,成就“创新共享,智慧互联”的精彩世界。

新华三集团

发展历程

1985年

中国惠普有限公司 在北京成立。

2002年

HP全球软件服务中心(中国)于2002年在上海成立。

2003年

华为3Com技术有限公司成立。

2004年

华三通信质量管理体系通过 ISO9001 :2000国际认证。

惠普在上海设立了中国研发中心,专门针对中国消费者的独特需求设计电脑产品。

惠普(大连)全球运营中心成立。

2005年

华三通信发布"安全渗透网络"解决方案。

华三通信成功承建国家电子政务外网一期工程。

2006年

创立“H3C”品牌。

发布H3Care服务品牌。

华三通信确立“专业化,温暖感”的服务理念。

华三通信承建全球最高海拔的青藏铁路信息系统骨干网。

惠普打印产品上海研发中心成立。

2007年

华三正式更名为:杭州华三通信技术有限公司,简称“华三通信”。

华三通信发布公司战略规划和愿景目标——IToIP。

华三通信在网络、安全、多媒体监控和存储等多领域发力。

华三通信全线产品通过国际权威测试机构TollyGroup严格测试。

2008年

华三通信通过TL9000质量管理体系认证。

华三通信顺利完成2008北京奥运数据通信系统保障任务。

2009年

华三通信发明专利授权量排名国内企业前十。

华三通信发布国内首款基于100G平台的新一。

华三通信代统一交换架构数据中心产品。

华三通信S12500,并在随后一年迅速占领数据中心市场制高点。

华三通信2010首次实现国内企业级数据通信市场占有率第一。

华三通信数据中心交换机成为首个获国际绿色认证的同类产品

华三通信成功服务于上海世博会。

惠普重庆生产基地投入生产。

2011年

华三通信以年度442件发明专利授权量位列国内企业第六位。

华三通信成为中国最年轻、人员规模最小的发明专利授权十强企业。

华三通信新一代核心路由器CR16000引领100G路由迈入大规模应用时代。

华三通信发布云就绪网络解决方案,推出业界首款40G超万兆防火墙。

2013年

华三通信发布公司新愿景:成为新IT基础架构领导者。

华三通信发布云网融合理念,推出H3Cloud云计算解决方案。

华三通信成为中国数据通信领域唯一一家拥有有效CMMI4证书的企业。

惠普成立中国区。

2014年

华三通信发布国内第一款融合网络、计算和存储的UIS统一架构系统。

华三通信连续20个季度获得腾讯最佳服务提供商称号。

华三通信成为中国最具责任感企业唯一IT企业。

2015年

中国惠普成立了紫光华山,该公司及其下属机构包含现惠普企业集团在华的全部业务。

华三通信发布“Connect +”大互联战略。

华三通信通过全部五项国家标准云测评,成为业界领先的通过全项测试的云计算厂商之一。

华三通信发布全球首款一体化安全交付平台天机系统。

华三通信中标中国电信IPRAN产品集采,开启新的市场,进一步确立运营商市场主流品牌地位。

2016年

5月6日 新华三集团成立。

新华三与中国石油签署战略采购协议。

新华三推出全新H3C服务器。

新华三与云南省政府签署战略合作协议。

新华三发布绿洲平台。

2020年

2020年10月28日,紫光集团联席总裁兼新华三首席执行官 于英涛 在该公司新品发布会上宣布,新华三将第一次进入芯片领域。11月将正式发布路由交换机400G芯片。 [2]

2021年

2021年7月13日,2021京东云峰会在北京嘉里大酒店成功举办。峰会上紫光股份旗下新华三与京东云签署了战略合作协议。 [6]

公司文化

新华三集团将诚信作为最高的价值准则和最根本的行为标准,并通过信任和监督机制,将诚信应用于员工,企业,客户,和 社会 之间的全部关系中。

品牌定位:新IT解决方案提供商

新华三集团,融合了杭州华三和惠普中国的IT智慧,从产品,解决方案到服务,具备强大的自主创新和本土服务能力。

新华三集团在IT产业变革时代,紧密耦合时代潮流,融合卓越的IT智慧与实践,做包含产品技术、服务咨询等一站式、全方位的新IT解决方案领导者。

新华三集团不仅是作为一个提供商,更是创新领先的服务商,时刻致力于为客户提供具有竞争力的整合全方位新IT服务体验,以引领者姿态赋能IT变革,带领行业前行。

解决方案

新华三集团拥有最完善的解决方案能力,未来将通过业界最全面的新IT解决方案推动生产、管理和营销模式变革,重塑产业链、供应链、价值链,改造提升传统动能,使之焕发新的生机与活力,最终加速新经济的发展。

大互联

2015年11月,华三通信发布了Connect+"未来不止于联接"大互联战略,即通过全场景、融合交付、泛联接的“Connect+”网络,实现人、设备、应用和数据的全连接。作为大互联Connect+落地的关键,新华三在新网络基础上,推出了应用驱动网络基础架构,通过SDN、NFV等技术推动网络演进,实现网络自动化、智能化和能力资源化,推动业务随需交付,满足业务新常态所要求的快、变、云化的部署需求。针对数据中心、广域网、园区网等场景,华三通信还制定了更为详细的应用驱动网络解决方案,帮助用户开展大互联建设实践,更轻松地迈向新IT。

大数据

大数据领域:在“三大一云”的整体战略下,成为大数据平台方法论的第一品牌。政府、教育、医疗、交通等公共领域,将会成为新华三在大数据率先规模落地的突破口。此外,新华三还将着重从开放和安全的角度,推动和完善生态产业链的形成;并与业界机构一起制定大数据人才培养认证计划,提供大数据教学、实训等人才培养方案。

云计算

云计算颠覆性的改变了传统IT的消费模式和服务模式,用户开始从“购买软硬件产品”向“购买IT服务”转变,并通过Internet自助获取和使用服务,大大提高了IT效率和敏捷性;继而可通过持续为客户、合作伙伴和员工交付新的应用和服务,加快价值实现。华三云以自主创新产品为核心,坚持“H3Cloud+”战略,在“H3Cloud+网络”所构成的云网融合方案基础上,形成“H3Cloud+行业”的专有云方案,以及“H3Cloud+公有云”的混合云方案,在充分保证安全性和业务兼容性的基础上,实现IT资源的云化和IT运维的简化,提升整体IT服务能力。

大安全

大安全领域:新华三旗下的华三通信是中国信息安全领域企业,12年持续研发投入,安全产品涵盖13大类,120多款,专利数量870多个,全部安全可控。其中,新华三M9000高端防火墙亦连续4次入围中国移动防火墙集采,服务于广东移动核心网Gi出口等关键应用场景。同时,华三通信还是国家信息安全标准委员会的标准牵头单位,承接其中3项标准编写,并承接了下一代互联网IPV6的安全试点标准的制订和技术研究工作。

移动化

移动正在改变人们的生活,移动正在改变人们的工作方式,移动正在驱动技术和商业变革。随着员工自发的或企业要求的通过移动智能终端进行办公和业务的趋势普及开来,企业移动化已准备充分发挥它的潜力,通过确保随时随地在任何设备(不仅仅是智能手机和平板电脑)上从任何网络都能够安全即时地访问应用程序、桌面、数据与服务,组织机构能够让移动办公人员自由灵活地选择办公方式。

数据中心

新华三专注于数据中心,被业界公认为数据中心设计与运营的领导者,凭借领先的数据中心建设理念及多年的技术积累与最佳实践,为用户规划建设高效、稳定、绿色节能的数据中心,提供咨询、设计、实施、验证、运维的全球最佳数据中心解决方案和服务。

渠道合作

新华三的核心渠道交叉销售政策,帮助华三通信和紫光华山两家企业的核心渠道合作伙伴直接进入对方渠道体系,合作伙伴资质直接平移并享受对方渠道合作伙伴的同等权益。

社会 责任

新华三认为,一家企业做大做强不仅关乎自身实力,更是 社会 意识与责任的共同成长。因此,新华三视企业 社会 责任为企业发展之重任,充分整合自主研发的创新优势和多年积累的全球经验,以新IT解决方案领导者的身份,帮助各行各业实现转型发展。

战略合作

2015年5月21日,清华控股与惠普公司宣布达成合作, 清华控股有限公司 旗下紫光集团下属子公司 紫光股份有限公司 以不低于25亿美元收购惠普公司旗下“新华三”公司51%的股权,成为该公司的控股股东。

“新华三”将包括惠普公司的全资子公司华三通信与惠普中国有限公司的服务器、存储和技术服务业务,总估值约45亿美元(不含现金及负债)。中国惠普仍将继续100%拥有其在华的企业服务、软件、HP Helion云、Aruba网络产品和打印与个人系统业务。

社会 事件

“新华三杯”全国大学生IT技术大赛是新华三集团成立后,由之前的“H3C杯”全国大学生网络技术大赛更名而来。

更名为新“华三杯”后,比赛共吸引了来自全国500余所院校4000多名学生参赛。

在持续了4个月的赛程后,其中90名选手入围了最终的决赛。

社会 公益

2020年1月,紫光股份有限公司和新华三集团向湖北武汉市雷神山医院、 火神山医院 捐赠ICT设备价值3000万元。 [1]

获得荣誉

2020年12月23日,上榜2020中国新增长企业 社会 责任榜。 [3]

2020年11月3日,入围安全牛发布的《2020中国网络安全企业100强》。

2020年12月7日,在2020年度 云桌面 解决方案提供商排行榜中排名第17位。

深圳市法本信息技术股份有限公司(简称:法本信息)总部位于中国深圳市南山区高新科技园(卫星大厦9L),并在北京、上海、广州设有分公司,长沙、香港等地设有办事处。法本信息现有员工约2200名。

法本信息是一家立足于深圳,面向中国大陆、香港及海外,专注为金融、通信、互联网+行业提供商业大数据解决方案集成服务、IT服务、产品及解决方案的IT综合服务商。法本信息已经获得国家高新技术企业认证、双软认证、CMMI4认证、ISO27001以及ISO9001认证,并在IT研发管理、大数据分析、商业智能、互联网、云计算等领域拥有30多项核心知识产权。

法本信息已于2015年7月成功在新三板挂牌上市。

作者 | 网络大数据

来源 | 产业智能官

数据处理是对纷繁复杂的海量数据价值的提炼,而其中最有价值的地方在于预测性分析,即可以通过数据可视化、统计模式识别、数据描述等数据挖掘形式帮助数据科学家更好的理解数据,根据数据挖掘的结果得出预测性决策。其中主要工作环节包括:

大数据采集 大数据预处理 大数据存储及管理 大数据分析及挖掘 大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。

一、大数据采集技术

数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。

大数据采集一般分为:

大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。

基础支撑层:提供大数据服务平台所需的虚拟服务器,结构化、半结构化及非结构化数据的数据库及物联网络资源等基础支撑环境。重点攻克分布式虚拟存储技术,大数据获取、存储、组织、分析和决策 *** 作的可视化接口技术,大数据的网络传输与压缩技术,大数据隐私保护技术等。

二、大数据预处理技术

完成对已接收数据的辨析、抽取、清洗等 *** 作。

抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。

清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。

三、大数据存储及管理技术

大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。

开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。其中,非关系型数据库主要指的是NoSQL数据库,分为:键值数据库、列存数据库、图存数据库以及文档数据库等类型。关系型数据库包含了传统关系数据库系统以及NewSQL数据库。

开发大数据安全技术:改进数据销毁、透明加解密、分布式访问控制、数据审计等技术;突破隐私保护和推理控制、数据真伪识别和取证、数据持有完整性验证等技术。

四、大数据分析及挖掘技术

大数据分析技术:改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。

数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

数据挖掘涉及的技术方法很多,有多种分类法。根据挖掘任务可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象可分为关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web;根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。

机器学习中,可细分为归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法。

数据挖掘主要过程是:根据分析挖掘目标,从数据库中把数据提取出来,然后经过ETL组织成适合分析挖掘算法使用宽表,然后利用数据挖掘软件进行挖掘。传统的数据挖掘软件,一般只能支持在单机上进行小规模数据处理,受此限制传统数据分析挖掘一般会采用抽样方式来减少数据分析规模。

数据挖掘的计算复杂度和灵活度远远超过前两类需求。一是由于数据挖掘问题开放性,导致数据挖掘会涉及大量衍生变量计算,衍生变量多变导致数据预处理计算复杂性;二是很多数据挖掘算法本身就比较复杂,计算量就很大,特别是大量机器学习算法,都是迭代计算,需要通过多次迭代来求最优解,例如K-means聚类算法、PageRank算法等。

从挖掘任务和挖掘方法的角度,着重突破:

可视化分析。数据可视化无论对于普通用户或是数据分析专家,都是最基本的功能。数据图像化可以让数据自己说话,让用户直观的感受到结果。 数据挖掘算法。图像化是将机器语言翻译给人看,而数据挖掘就是机器的母语。分割、集群、孤立点分析还有各种各样五花八门的算法让我们精炼数据,挖掘价值。这些算法一定要能够应付大数据的量,同时还具有很高的处理速度。 预测性分析。预测性分析可以让分析师根据图像化分析和数据挖掘的结果做出一些前瞻性判断。 语义引擎。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。语言处理技术包括机器翻译、情感分析、舆情分析、智能输入、问答系统等。 数据质量和数据管理。数据质量与管理是管理的最佳实践,透过标准化流程和机器对数据进行处理可以确保获得一个预设质量的分析结果。

预测分析成功的7个秘诀

预测未来一直是一个冒险的命题。幸运的是,预测分析技术的出现使得用户能够基于历史数据和分析技术(如统计建模和机器学习)预测未来的结果,这使得预测结果和趋势变得比过去几年更加可靠。

尽管如此,与任何新兴技术一样,想要充分发挥预测分析的潜力也是很难的。而可能使挑战变得更加复杂的是,由不完善的策略或预测分析工具的误用导致的不准确或误导性的结果可能在几周、几个月甚至几年内才会显现出来。

预测分析有可能彻底改变许多的行业和业务,包括零售、制造、供应链、网络管理、金融服务和医疗保健。AI网络技术公司Mist Systems的联合创始人、首席技术官Bob fridy预测:“深度学习和预测性AI分析技术将会改变我们社会的所有部分,就像十年来互联网和蜂窝技术所带来的转变一样。”。

这里有七个建议,旨在帮助您的组织充分利用其预测分析计划。

1能够访问高质量、易于理解的数据

预测分析应用程序需要大量数据,并依赖于通过反馈循环提供的信息来不断改进。全球IT解决方案和服务提供商Infotech的首席数据和分析官Soumendra Mohanty评论道:“数据和预测分析之间是相互促进的关系。”

了解流入预测分析模型的数据类型非常重要。“一个人身上会有什么样的数据” Eric Feigl - Ding问道,他是流行病学家、营养学家和健康经济学家,目前是哈佛陈氏公共卫生学院的访问科学家。“是每天都在Facebook和谷歌上收集的实时数据,还是难以访问的医疗记录所需的医疗数据”为了做出准确的预测,模型需要被设计成能够处理它所吸收的特定类型的数据。

简单地将大量数据扔向计算资源的预测建模工作注定会失败。“由于存在大量数据,而其中大部分数据可能与特定问题无关,只是在给定样本中可能存在相关关系,”FactSet投资组合管理和交易解决方案副总裁兼研究主管Henri Waelbroeck解释道,FactSet是一家金融数据和软件公司。“如果不了解产生数据的过程,一个在有偏见的数据上训练的模型可能是完全错误的。”

2找到合适的模式

SAP高级分析产品经理Richard Mooney指出,每个人都痴迷于算法,但是算法必须和输入到算法中的数据一样好。“如果找不到适合的模式,那么他们就毫无用处,”他写道。“大多数数据集都有其隐藏的模式。”

模式通常以两种方式隐藏:

模式位于两列之间的关系中。例如,可以通过即将进行的交易的截止日期信息与相关的电子邮件开盘价数据进行比较来发现一种模式。Mooney说:“如果交易即将结束,电子邮件的公开率应该会大幅提高,因为买方会有很多人需要阅读并审查合同。”

模式显示了变量随时间变化的关系。“以上面的例子为例,了解客户打开了200次电子邮件并不像知道他们在上周打开了175次那样有用,”Mooney说。

3 专注于可管理的任务,这些任务可能会带来积极的投资回报

纽约理工学院的分析和商业智能主任Michael Urmeneta称:“如今,人们很想把机器学习算法应用到海量数据上,以期获得更深刻的见解。”他说,这种方法的问题在于,它就像试图一次治愈所有形式的癌症一样。Urmeneta解释说:“这会导致问题太大,数据太乱——没有足够的资金和足够的支持。这样是不可能获得成功的。”

而当任务相对集中时,成功的可能性就会大得多。Urmeneta指出:“如果有问题的话,我们很可能会接触到那些能够理解复杂关系的专家” 。“这样,我们就很可能会有更清晰或更好理解的数据来进行处理。”

4使用正确的方法来完成工作

好消息是,几乎有无数的方法可以用来生成精确的预测分析。然而,这也是个坏消息。芝加哥大学NORC (前国家意见研究中心)的行为、经济分析和决策实践主任Angela Fontes说:“每天都有新的、热门的分析方法出现,使用新方法很容易让人兴奋”。“然而,根据我的经验,最成功的项目是那些真正深入思考分析结果并让其指导他们选择方法的项目——即使最合适的方法并不是最性感、最新的方法。”

罗切斯特理工学院计算机工程系主任、副教授shanchie Jay Yang建议说:“用户必须谨慎选择适合他们需求的方法”。“必须拥有一种高效且可解释的技术,一种可以利用序列数据、时间数据的统计特性,然后将其外推到最有可能的未来,”Yang说。

5用精确定义的目标构建模型

这似乎是显而易见的,但许多预测分析项目开始时的目标是构建一个宏伟的模型,却没有一个明确的最终使用计划。“有很多很棒的模型从来没有被人使用过,因为没有人知道如何使用这些模型来实现或提供价值,”汽车、保险和碰撞修复行业的SaaS提供商CCC信息服务公司的产品管理高级副总裁Jason Verlen评论道。

对此,Fontes也表示同意。“使用正确的工具肯定会确保我们从分析中得到想要的结果……”因为这迫使我们必须对自己的目标非常清楚,”她解释道。“如果我们不清楚分析的目标,就永远也不可能真正得到我们想要的东西。”

6在IT和相关业务部门之间建立密切的合作关系

在业务和技术组织之间建立牢固的合作伙伴关系是至关重要的。客户体验技术提供商Genesys的人工智能产品管理副总裁Paul lasserr说:“你应该能够理解新技术如何应对业务挑战或改善现有的业务环境。”然后,一旦设置了目标,就可以在一个限定范围的应用程序中测试模型,以确定解决方案是否真正提供了所需的价值。

7不要被设计不良的模型误导

模型是由人设计的,所以它们经常包含着潜在的缺陷。错误的模型或使用不正确或不当的数据构建的模型很容易产生误导,在极端情况下,甚至会产生完全错误的预测。

没有实现适当随机化的选择偏差会混淆预测。例如,在一项假设的减肥研究中,可能有50%的参与者选择退出后续的体重测量。然而,那些中途退出的人与留下来的人有着不同的体重轨迹。这使得分析变得复杂,因为在这样的研究中,那些坚持参加这个项目的人通常是那些真正减肥的人。另一方面,戒烟者通常是那些很少或根本没有减肥经历的人。因此,虽然减肥在整个世界都是具有因果性和可预测性的,但在一个有50%退出率的有限数据库中,实际的减肥结果可能会被隐藏起来。

六、大数据展现与应用技术

大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。

在我国,大数据将重点应用于以下三大领域:商业智能 、政府决策、公共服务。例如:商业智能技术,政府决策技术,电信数据信息处理与挖掘技术,电网数据信息处理与挖掘技术,气象信息分析技术,环境监测技术,警务云应用系统(道路监控、视频监控、网络监控、智能交通、反电信诈骗、指挥调度等公安信息系统),大规模基因序列分析比对技术,Web信息挖掘技术,多媒体数据并行化处理技术,影视制作渲染技术,其他各种行业的云计算和海量数据处理应用技术等。

部署大数据业务七步走

对于大数据,有三个重要的事实。首先,它并不是新趋势。亚马逊、微软和谷歌自上世纪90年代就开始进行大数据工作。事实上,几十年来,很多公司都一直在挖掘数据。可能由于当时只有资金雄厚的大型公司才能够进行大数据研究,但大数据确实早已存在。现在,基于廉价的计算和存储能力以及新工具和技术,几乎每个人都可以使用高级数据挖掘技术和算法了。

很多人认为大数据只是商业智能(BI)的新名称,虽然这两者有相似之处,但大数据超出了BI的范畴。

第二个事实:“大”是相对的。现在各行业各组织确实正面对创纪录水平的数据增长。据IDC称,我们每秒创造超过58 TB数据,到2020年,将拥有超过35ZB的存储数据。然而,大数据并不一定是巨大的,大数据并不在于其规模,而在于你需要如何处理它。拥有100 TB的小公司可能也存在大数据问题,因为他们需要提取、分析数据,并作出决策。

第三,大数据处理中使用的数据的定义是广泛的,它可以包含结构化和非结构化数据。对于一些公司来说,最重要的是大数据的元数据,或者关于数据的数据。

麦肯锡将大数据定义为“其规模超出传统数据库软件的捕捉、存储、管理和分析能力的数据集”,笔者补充了这一点:“这些数据集需要大量运行在数百甚至数千台服务器(云)的并行软件(系统)来处理。”

以下是大数据成功的7个步骤:

第1步:承认存在问题。 这往往是最难的一步。10年前,我们拒绝承认我们的网络已不再受防火墙和代理服务器设置的保护,而我们不得不为员工远程访问开放基础设施并拥抱互联网。对于大数据,IT领导者需要评估其数据情况:

● 你的数据集让你不堪重负吗?

● 你不知道所有数据的位置?

● 你(或者企业领导者)没有从你的数据中得到所需的信息?

● 企业领导没有基于数据来做决策?

● 有可能提高IT在企业政策和战略决策中的相关性吗?

如果你像大多数公司一样,部分或者所有这些问题的答案都是肯定的,那么是时候控制你的数据,并从中挖掘出情报以提供给领导层做决定。

第2步:认识到大数据带来的大机会。 我们总是被告知要紧密联系业务,“业务技术”这一说法已存在多年,但我们总是很难看到最新的软件和流程如何直接影响收入或者全球经济增长。而大数据却可以。为什么?因为信息就是力量,企业领导需要数据中挖掘出的信息来帮助企业竞争和发展。员工、客户和市场产生的大量数据让整个企业(从销售到营销部门)都不堪重负。而大数据能够为你提供简洁且实时的价值信息,帮助增加收入。[page]

第3步:制定大数据计划。 与任何计划一样,你开始就应该想到结果。企业需要知道什么?他们需要回答的问题是什么?在你开始使用Hadoop前,解决这些问题,并签订联合协议。然后按照下列步骤 *** 作(每个步骤可能需要数周或者数月):

1、隔离属于“大数据”的部分数据

2、分离“产品”大数据和“公司”大数据,例如人力资源分析需要的员工数据和电子商务平台的客户或产品搜索数据需要分离

3、认识和了解你的数据的波峰和波谷

4、了解哪些技术允许实时(或接近实时)大数据处理

5、确定关键的解决方案/供应商

6、从小事做起,评估与发展-先做一个项目,让你可以快速展示成果和ROI,然后转移到下一个大数据项目

7、继续分析、调整和输入-大数据是灵活的,需要随着数据、情报和企业要求的变化进行调整

第4步:利用分布式系统。大数据要求我们转换对系统和基础设施的想法。正如虚拟化从根本上改变了我们利用服务器和应用程序的方式,分布式系统和处理使我们能够管理大数据,因为分布式架构允许我们将问题分解成很多小任务,然后将这些任务分配到多个系统。好消息是,我们拥有了越来越多的攻击和架构框架可以利用,包括Cassandra、Hadoop、VMware、Red Hat等。分布式系统并不新鲜,但大数据将其带入到全新的水平,分布式方法包括:

● 多租户架构

● 分布式数据库

● 虚拟化

● 多线程

● 多核心CPU

● 并行处理

● 分布式文件系统

● 分布式负载平衡

● RAID算法

第5步:从分布式到分散式。 对大多数公司来说,这是真正的范式转变,这也是大数据和云计算结合的地方,鉴于互联网是世界上最大的分布式和分散的系统,我们应该更加充分地利用互联网来实现大数据。

我们很喜欢分布式实例或者计算处理,但分散式往往有种失去控制的感觉。这有必要吗?对于大数据,采用分散式做法是必要的,因为由于过度和孤立的服务,所有未使用的实例和存储容量都将浪费。

更重要的是,单靠分布式组件无法让我们跟上数据增长的步伐。IDC估计,到2020年,产生的数据和数据中心容量之间的差距将达到60%

然而,部分原因在于我们没有充分利用我们已经拥有的容量。Gartner估计,大多数计算机、服务器和网络只运行了30%的容量以准备好应对峰值或者未来增长。虽然我们可能永远不会以90%或者100%的容量运行,但我们可以更好地利用现有的容量,节省数百万美元,提高现有基础设施的总体拥有成本(TCO)。

分散式方法的主要特点:

● 没有中央瓶颈

● 大量的能力

● 有机的,需求推动容量增长

● 充分利用现有的基础设施和边缘设备

● 信息共享

● 假定每个人/每一个节点是“不可信任的”

● 地理分布:

○ 所有权和参与

○ 成本

○ 管理开销

○ 风险

分散式方法存在很多很好的例子,其中最知名的就是开源运动。

分散式方法还有两个新例子,笔者定义为分散式云系统:CloudStack和OpenStack我们仍然位于分散式方法的早期阶段,但随着数据继续增长,这将是未来几年的重要趋势。[page]

第6步:雇佣/培养合适的人才和技能。 云计算并不意味着更少的IT工作,但云计算和大数据的出现却是意味着我们需要发展我们的技能和培养人才。在大数据世界,数据库管理员等现有岗位变得更加重要。你还需要培养和招聘的其他职位包括:

● 数据科学家

● 架构师

● 随机理论师(算法)

● 业务分析师

● UX/UI专家

其中一些职位似乎是合乎逻辑的,但对于业务分析师和UX/UI专家,传统上不属于IT部门,你可以将这些人员安排在生产管理中,而在大数据解决方案中,他们需要携手开发和运营团队。这是因为你不能直接将大数据信息交给业务方面,使用图表和易于理解的分析是关键。

此外,如果你还没有整合开发/运营团队来更好地管理云计算部署,那么现在可以这样做了。这两个团队必须携手合作来实现任何云计算或者大数据战略。

第7步:通过大数据来利用数据。正如IT职位可能开始更倾向于业务,IT需要改变其度量的方式。你的团队中的每个人都应该热衷于追踪和记录关键性能指标(KPI),这些应该符合业务指标,而不只是及时发布和交付高质量代码。技术团队的每个人都应该有明确的指标,并努力寻找新方法来提高指标结果。

大数据可能不是我们所有人想要的答案,但它确实给IT创造了帮助企业提高收入的机会。

如何选择大数据应用程序

选择大数据软件对于组织来说是一个复杂的过程,组织需要仔细评估其目标和供应商提供的解决方案。

如今可以确定的是,组织对大数据解决方案需求量很大。组织的管理者知道他们的大数据是不可忽视的最宝贵的资源之一。因此,他们正在寻找可帮助存储、管理和分析其大数据的硬件和软件。

根据调研机构IDC公司的调查,2017年组织在大数据和数据分析方面的支出为1508亿美元,比去年增长124%。到2020年,这一支出可能会以每年119%的速度增长,2020年的收入可能高达2100亿美元。

大部分收入都用于大数据应用。据IDC公司预测,到2020年,仅软件开支就可能超过700亿美元。非关系分析数据存储(如NoSQL数据库)的支出增长尤其迅速,每年可能增长386%,认知软件平台(如人工智能和机器学习能力的分析工具)每年可能增长233%。

为了充分利用大量的数据支出,供应商在各种不同的产品和服务上打上了“大数据”标签。这种产品的扩散会使组织很难找到合适的大数据应用程序来满足他们的需求。专家建议,企业开始选择大数据应用程序的一个好方法是精确地确定自己所需要什么类型的应用程序。

大数据应用的类型

企业软件供应商提供了大量不同类型的大数据应用程序。适合企业的大数据应用将取决于其目标。

例如,如果企业只想更加详细和深入地扩展现有的财务报告功能,那么数据仓库和商业智能解决方案可能已足以满足其需求;如果企业的销售和营销团队希望利用其大数据的发现增加收入和利润的新机会,则可以考虑创建数据湖和/或投资数据挖掘解决方案;如果企业想创建一个数据驱动的文化,组织中的每个人都在使用数据来指导他们的决策,那么企业可能需要数据湖和预测分析,内存数据库,也可能是流分析。

这样的事情将会变得更复杂,因为不同类型的工具之间的界限可能会有些模糊。一些商业智能工具具有数据挖掘和预测分析功能。一些预测分析工具包括流媒体功能。

最好的办法是组织一开始就清楚地确定自己的目标,然后去寻找能够帮助其实现这些目标的产品。

选择大数据应用程序时的关键决策

无论企业选择哪种类型的大数据应用程序,都需要做出一些关键决策,以帮助企业缩小选择范围。以下是一些最重要的考虑事项:

(1)内部部署数据中心与基于云计算的大数据应用程序

企业需要做出的第一个重大决策是要在自己的数据中心托管大数据软件,还是希望采用基于云计算的解决方案。

目前,更多的组织似乎正在选择云计算。分析机构Forrester公司副总裁兼首席分析师BrianHopkins在2017年8月的一篇博客文章中写道:“通过云订阅在大数据解决方案上的全球支出将增长快近75倍。此外,根据数据分析专业人员的2016和2017调查,公有云是大数据的头号技术优先事项。”

基于云计算的大数据应用受到欢迎有多种原因,其中包括可扩展性和易管理性。主要的云计算供应商也在人工智能和机器学习研究方面处于领先地位,这使得他们可以在解决方案中添加高级功能。

但是,云计算对于组织来说并不总是最好的选择。对合规性或安全性要求较高的组织有时会发现他们需要将敏感数据保留在内部部署的数据中心。此外,一些组织已经在现有的本地数据解决方案上进行投资,并且他们发现继续在本地部署数据中心运行大数据应用程序或使用混合方法会更具成本效益。

(2)私有vs开源的大数据应用程序

一些最流行的大数据工具(包括Hadoop生态系统)可以在开源许可下获得。 Forrester公司指出,“2017年,企业将在Hadoop软件和相关服务上投入8亿美元。”

Hadoop和其他开源软件最大的吸引力之一是降低总体拥有成本。尽管专有解决方案需要支付高昂的许可费,并且可能需要昂贵的专用硬件,但Hadoop没有许可费,并且可以在标准的硬件上运行。

然而,企业有时发现很难获得开源的解决方案,以满足他们的需要。他们可能需要购买支持或咨询服务,组织在计算总拥有成本时需要考虑这些费用。

(3)批处理vs流式传输大数据应用程序

最早的大数据解决方案(如Hadoop)只是处理批量数据,但企业越来越多地发现他们希望实时分析数据。这引发了对Spark、Storm、Samza等流媒体解决方案的更多兴趣。

许多分析师表示,即使组织认为他们现在不需要处理流式数据,流媒体功能也可能在不久的将来成为标准 *** 作流程。出于这个原因,许多组织正在向Lambda体系结构迈进,这是一种既能处理实时数据又能批处理数据的数据处理体系结构。

在大数据应用中寻找特性

一旦企业缩小了选项范围,就需要评估其正在考虑的大数据应用程序。以下包括一些最重要的需要考察的因素。

与传统技术集成 - 大多数组织已经在数据管理和分析技术方面进行现有投资。完全替代该技术可能代价高昂并且具有破坏性,因此组织通常会选择寻找可以与现有工具一起使用的解决方案,或者可以增加现有软件。

绩效 - 2017年Talend研究发现,实时分析功能是商业领袖的首要IT优先事项之一。如果要从这些洞察中获益,管理人员和工作人员需要能够及时获取见解。这意味着投资可以提供他们所需速度的技术。

可扩展性 - 大数据存储的规模每天都会变得更大。组织需要快速执行的大数据应用程序,随着数据存储量以指数级增长,这些应用程序可以继续快速执行。这种对可扩展性的需求是基于云计算的大数据应用变得非常流行的主要原因之一。

可用性 - 组织还应该考虑他们打算购买的任何大数据应用程序的“学习曲线”。易于部署、易于配置、界面直观和/或与组织已经使用的工具相似或集成的工具可以提供巨大的价值。

可视化 - BI-Surveycom表示,“针对商业用户的可视化和探索性数据分析(称为数据发现)已经演变成当今市场上最热门的商业智能和分析主题。”在图表中呈现数据可以使人类的大脑更容易发现趋势和异常值,加快识别可 *** 作见解的过程。

灵活性 – 企业如今所需要的大数据可能与其在一两年前的需求大不相同。这就是为什么许多企业选择寻找能够满足各种不同目标的工具,而不是很好地执行单一功能的原因。

安全性 - 这些大数据存储中包含的大部分数据都是敏感信息,这对于竞争对手、国家机构或黑客都是非常有价值的。组织需要确保他们的大数据具有足够的保护,以防止成为头条新闻报道的大量数据泄露事件。这意味着组织需要寻找具有内置安全功能(如加密和强身份验证)的工具,或者寻找与现有安全解决方案集成的工具。

支持 - 即使有经验的IT专业人员有时也会发现难以部署、维护和使用复杂的大数据应用程序。不要忘记考虑各供应商提供的支持的质量和成本。

生态系统 - 大多数组织需要多种不同的应用程序来满足他们所有的大数据需求。这意味着要寻找一个大数据平台,与其他许多流行工具以及与其他提供商有强大合作关系的供应商进行整合。

自助服务能力 - 2017年毕马威公司针对组织的CIO调查发现,60%的CIO持续报告指出数据分析人才短缺,而大数据和分析是最需要的技能组合。由于没有足够的数据科学家去解决,组织正在寻找其他商业专业人士可以独立使用的工具。调研机构Gartner公司最近的博客文章指出,通常在一个组织中,大约32%的员工正在使用商业智能和分析。

总体拥有成本 - 大数据应用的前期成本只是其中的一小部分。组织需要确保他们考虑相关硬件成本,正在采用的许可或订购费用、员工时间、支持成本,以及与本地部署应用程序的物理空间相关的任何费用。不要忘记要考虑到云计算成本随着时间的推移普遍下降的事实。

预计价值的时间 - 另一个重要的财务考虑因素是企业能够以多快的速度启动并运行特定的解决方案。大多数公司都希望在几天或几周内,而不是几个月或几年内从他们的大数据项目中受益。

人工智能和机器学习 - 最后,考虑各种大数据应用供应商的创新。人工智能和机器学习的研究正在以惊人的速度发展,并成为大数据分析的主流部分。据Forrester公司预测,“企业在2017年对于人工智能的投资增加了三倍,因为企业需要将客户数据转换为个性化体验。”如果企业选择的供应商在这项研究没有处于行业前沿,那么可能会发现自己落后于竞争对手。

选择大数据应用程序的提示

很明显,选择正确的大数据应用程序是一个复杂的过程,这涉及诸多因素。已成功部署大数据软件的专家和组织提供以下建议:

理解自己的目标–企业在选择大数据应用程序时,需要知道自己想完成什么是至关重要的。如果不确定为什么要投资某项技术,那么其项目不太可能成功。

从小规模开始-如果企业可以通过小规模的大数据分析项目取得成功,那么企业对使用该工具将会产生更多的兴趣。

采取整体方法-尽管小规模项目可以帮助企业获得技术方面的经验和专业知识,但选择最终可用于整个业务的应用程序非常重要。Gartner公司建议:“为了支持无处不在的数据和分析世界,IT专业人员需要创建一个新的端到端体系结构,为敏捷、规模和实验而构建。如今,技术学科正在融合,数据和分析的方法正在变得更加整体化,涵盖整个业务。”

协同工作–Gartner公司的这篇博客文章还指出:“建议数据和分析领导者积极主动地在他们的组织中传播分析,以便从启用数据驱动业务 *** 作中获得最大的收益。”许多组织正试图构建数据驱动文化,这需要业务和IT领导者之间的大量合作。

病毒式传播–前面提到的自助服务功能还可以帮助创建数据驱动的文化。Gartner公司建议:“让分析在企业内部和外部真正发挥作用。通过培养实用的自助服务方法,并通过在交互和流程中的数据摄入点上嵌入分析功能,使更多的业务用户能够执行分析。”

随着“大数据时代”的来临,企业越来越重视数据的作用,数据给企业带来的价值也越来越多。本文档将介绍大数据给企业带来的机遇与挑战以及企业的大数据解决方案。

第一步先搞清楚什么是大数据?他不是简单的大量数据或海量数据,而是有着4V特征的数据金矿。他给我们的企业会带来机遇与挑战。

第二步我们根据大数据的特征,分析企业大数据平台要迎接大数据的挑战,应该具备什么样的能力。

第三部分,基于大数据平台要求,我们提出一个企业大数据的技术解决方案,介绍解决方案是如何解决大数据难题。

最后我看一看大数据应用当前存在的问题,未来将会怎样发展。

什么是大数据?

从数据角度看,大数据不是简单的大和多,大数据致电一把柒叁耳零一泗贰五领,而是有着4V的特征。简单说就是体量大、样式多、速度快、价值低。

体量大:最新研究报告,到2020年,全球数据使用量预计暴增44倍,达到352ZB。我们说大数据时,一般企业数据量要达到PB级才能称为大数据。

样式多:除了量大,大数据还包括了结构化数据和非结构化数据,邮件,Word,,音频信息,视频信息等各种类型数据,已经不是以往的关系型数据库可以解决的了。

速度快:这里说的是数据采集的速度,随着电子商务、移动办公、穿戴设备、物联网、智能小区等等的发展,数据产生的速度已经演进到秒级。企业要求能够实时获取数据,实时进行决策。

价值低:指的是价值密度,整个数据的价值是越来越高,但是因为数据量的壮大,数据价值密度也相应降低,无价值数据要占据大部分,企业需要从海量的业务中寻找价值。

从开发人员角度看,大数据和以往的数据库技术、数据仓库技术是不同的,他代表以Hadoop、Spark为首的一系列新技术。

这类技术的显著特点是:分布式、内存计算。

分布式:简单的说,分布式就是将复杂的、费时的任务拆分为多个细小的任务,并行处理。这里的任务就包含了数据采集、数据存储、数据处理。

内存计算:实质上就是CPU直接从内存而非硬盘上读取数据,并对数据进行计算、分析。内存计算非常适合处理海量的数据,以及需要实时获得结果的数据。比如可以将一个企业近十年几乎所有的财务、营销、市场等各方面的数据一次性地保存在内存里,并在此基础上进行数据的分析。

数据挖掘:大数据的核心实际上还应该包括数据挖掘技术,这是一个和统计学联系紧密的技术,粗略的划分为分类、聚类、预测、关联四大类,可从大量的、不完全的、模糊的数据中利用数学方法,提取出潜在的规律或知识。

大数据平台要求

大数据的能力分为数据采集、数据存储、数据计算或处理、数据挖掘、数据展现五个方面。

数据采集:需要对于海量数据、实时数据的采集能力,这是数据利用的第一步。

数据存储:对应大数据特点,需要大容量、高容错、高效率的存储能力,这是数据利用的基础。

数据计算:需要强大、廉价、快速的数据处理货计算能力,强大对应大数据的量大、类型多,廉价对应大数据的价值密度低,快速对应大数据的速度快,这是大数据能够发展的关键。

数据挖掘:要能够全角度、多方位的立体分析挖掘数据价值,应用好数据挖掘才能将数据转化为价值,这是数据利用的核心。

数据展现:多途径、直观、丰富的数据展现形式是数据的外在形象,这是数据应用的亮点,是能够得到用户认可的窗口。

以上是对于大数据平台需要解决的问题,必须具备的能力,数据提出的要求。

技术解决方案

企业大数据解决方案从数据处理流程上分为数据采集层、数据存储层、数据计算层、数据挖掘层、数据展现层,每一层解决大数据所需的关键难题。其中标黄的部分是传统数据处理技术。

数据采集层:

数据采集技术分为实时采集和定时采集,实时采集采用Oracle GoldenGate等工具,实时增量采集数据,保证数据的及时性;定时采集采用SAP Data Services等工具相结合的方式,定时抽取数据,主要用于大批量、非实时性数据。加入kettle、sqoop等分布式ETL工具,丰富多样化数据抽取服务,同时加入整合实时数据的kafka服务,处理大量实时数据。

数据存储层:

数据存储区在传统oracle的基础上,加入分布式文件系统、分布式列式数据库、内存文件系统、内存数据库、全文搜索等模块。其中,分布式文件系统ceph由于拥有数据分布均衡,并行化度高等特性,所以用于存储非结构化数据;分布式文件系统Hdfs由于拥有极佳的扩展性和兼容性,用于存储其他结构化数据;列式存储数据库hbase主要用于存储特定需求的海量数据,以供运算查询等服务。

数据计算层:

计算层采用标准SQL查询、全文搜索、交互分析Spark、实时数据处理Streaming、离线批处理、图计算Graph X等技术,对结构化数据、非结构化数据、实时数据、大批量数据进行数据计算处理。

核心计算方式spark内存计算引擎的优势:

轻量级快速处理。

易于使用,Spark支持多语言。

支持复杂查询。

实时的流处理。

可以与Hadoop和已存Hadoop数据整合。

可以与Hive整合

数据挖掘层:采用Spark_Mllib、R、Mhout等分析工具,依据模型分析引擎创建模型、算法库。由模型算法库对模型进行训练,生成模型实例,最后依据模型实例进行实时决策及离线决策。

数据展现层:提供门户展现、数据图表、电子邮件、办公软件等多种数据分析方式,在展现途径上可支持大屏幕、电脑桌面、移动终端等。

结束语

随着高性能计算机、海量数据的存储和管理的流程的不断优化,技术能够解决的问题终将不会成为问题。真正会制约或者成为大数据发展和应用瓶颈的有三个环节:

第一、数据收集和提取的合法性,数据隐私的保护和数据隐私应用之间的权衡。

任何企业或机构从人群中提取私人数据,用户都有知情权,将用户的隐私数据用于商业行为时,都需要得到用户的认可。然而,目前,中国乃至全世界对于用户隐私应当如何保护、商业规则应当如何制定、触犯用户的隐私权应当如何惩治、法律规范应当如何制定等等一系列管理问题都滞后于大数据的发展速度。未来很多大数据业务在最初发展阶段将会游走在灰色地带,当商业运作初具规模并开始对大批消费者和公司都产生影响之后,相关的法律法规以及市场规范才会被迫加速制定出来。可以预计的是,尽管大数据技术层面的应用可以无限广阔,但是由于受到数据采集的限制,能够用于商业应用、服务于人们的数据要远远小于理论上大数据能够采集和处理的数据。数据源头的采集受限将限制大数据的商业应用。

第二、大数据发挥协同效应需要产业链各个环节的企业达成竞争与合作的平衡。

大数据对基于其生态圈中的企业提出了更多的合作要求。如果没有对整体产业链的宏观把握,单个企业仅仅基于自己掌握的独立数据,无法了解产业链各个环节数据之间的关系,对消费者做出的判断和影响也十分有限。在一些信息不对称比较明显的行业,例如银行业以及保险业,企业之间数据共享的需求更为迫切。例如,银行业和保险业通常都需要建立一个行业共享的数据库,让其成员能够了解到单个用户的信用记录,消除担保方和消费者之间的信息不对称,让交易进行的更为顺利。然而,在很多情况下,这些需要共享信息的企业之间竞争和合作的关系同时存在,企业在共享数据之前,需要权衡利弊、避免在共享数据的同时丧失了其竞争优势。此外,当很多商家合作起来,很容易形成卖家同盟而导致消费者利益受到损失,影响到竞争的公平性。大数据最具有想象力的发展方向是将不同的行业的数据整合起来,提供全方位立体的数据绘图,力图从系统的角度了解并重塑用户需求。然而,交叉行业数据共享需要平衡太多企业的利益关系,如果没有中立的第三方机构出面,协调所有参与企业之间的关系、制定数据共性及应用的规则,将限制大数据的用武之地。权威第三方中立机构的缺乏将制约大数据发挥出其最大的潜力。

第三、大数据结论的解读和应用。

大数据可以从数据分析的层面上揭示各个变量之间可能的关联,但是数据层面上的关联如何具象到行业实践中?如何制定可执行方案应用大数据的结论?这些问题要求执行者不但能够解读大数据,同时还需深谙行业发展各个要素之间的关联。这一环节基于大数据技术的发展但又涉及到管理和执行等各方面因素。在这一环节中,人的因素成为制胜关键。从技术角度,执行人需要理解大数据技术,能够解读大数据分析的结论;从行业角度,执行人要非常了解行业各个生产环节的流程的关系、各要素之间的可能关联,并且将大数据得到的结论和行业的具体执行环节一一对应起来;从管理的角度,执行人需要制定出可执行的解决问题的方案,并且确保这一方案和管理流程没有冲突,在解决问题的同时,没有制造出新的问题。这些需求,不但要求执行人深谙技术,同时应当是一个卓越的管理者,有系统论的思维,能够从复杂系统的角度关联地看待大数据与行业的关系。此类人才的稀缺性将制约大数据的发展。

文 | 曾响铃

来源 | 科技 向令说(xiangling0815)

新基建浪潮下,作为底层支撑力量的数据与计算正变得越来越重要。

最近,由中国大数据与智能计算产业联盟主办,以“新算力 新基建 新经济”为主题的第二届中国超级算力大会ChinaSC在北京召开,包括国内外院士、知名学者和产业大咖在内的600多人参加,探讨了超级计算、新基建、云计算、大数据、人工智能、区块链等前沿技术进展。

这个奖项的颁出,官方给出的标准是,“能够把当前的各种技术有机的整合在一起,以满足不同应用场景下的各种综合的软硬件及系统方案,集科学性、先进性、稳定性、经济性等众多实际指标于一身,是技术转变为实际应用的关键环节。”

显然,这个权威奖项最关心的,是大数据解决方案在推动技术向实际应用转变的能力,而这也正是当下市场环境对大数据的核心需求。笔者尝试拆解鲲鹏大数据解决方案从宏观到 *** 作层面的布局,希望能给予相关从业者这方面的行业借鉴。

技术竞赛不停, 但大数据需求转向应用落地

数据的价值越来越明显,更好地释放数据价值的技术在不断演化,但是,随着更多政企组织开始着手利用大数据能力帮助现实业务提升,其需求也开始更多倾向于技术能否更好地实现应用落地,大数据解决方案正是为此而生。

以鲲鹏为案例,在推动技术落地的过程中,其大数据解决方案表现出符合时代需要的三大特征,让它在新趋势下占据领先优势,受到客户广泛欢迎并获得ChinaSC权威认可。

1、超高性能仍然是应用落地的最有力支撑

大数据解决方案要推动技术实现各种场景的落地,其前提和支撑,是底层软硬件性能本身要足够强悍,否则,再完善和深度的解决方案,没有性能支撑也只能是空中楼阁。

而也只有性能足够强悍,在应用落地阶段才能够尽可能去满足客户各类数据价值需求。

得益于底层软硬件能力的深度开发,鲲鹏大数据解决方案就拥有超高性能,为应用做好了充分的准备以及支撑。

例如,硬件方面,采用自主研发高性能鲲鹏920处理器,软件方面,则拥有在大数据场景下获得倍级性能提升的独创IO智能预取和Spark机器学习&图增强算法。

以鲲鹏与浙江移动的合作为例,2019年,浙江移动相继完成了IT云鲲鹏服务器测试,营业厅前台系统、CRM、计费、大数据、CDN等系统的验证及上线商用。这其中,浙江移动的CRM&BOSS系统在鲲鹏大数据方案支撑下,整体得到了较大提升,在规模承载网络运营支撑业务的情况下,该系统现在已经稳定运行一年。

目前,浙江移动围绕网络云,IT云和移动云,已经打造了全球首个运营商领域ICT全场景样板点。

2、全栈方案才能推动技术全面落地

解决方案本身并不是一种具体的技术,其价值在于各种技术的有效融汇,作为统一的输出方式面向政企客户。而在政企客户需求日益加深的情况下,尽可能满足多种场景、多种技术诉求的解决方案,就必须建立一套尽可能完善的全栈体系,将各种技术有机地、系统地、全面地整合在一起。

这正是华为鲲鹏大数据解决方案的体系构成,其基于鲲鹏处理器,构建了端到端打通硬件、 *** 作系统、中间件、大数据软件的全栈体系,并对应进行了全栈性能优化,推动各类技术汇聚成高性能解决方案:

可以看到,这套全栈体系,一方面通过有机整合,能够较为容易地同时满足科学性、先进性、稳定性、经济性等需求(例如,加速特性和大数据组件能够帮助方案更有效率同时成本更低);另一方面,作为全面、完整、一体化的信息化解决方案,也更容易去适应政府、金融、电信、互联网、大企业等不同行业应用需求。

从技术到应用落地,“全栈”成为重要的中间转换环节,不但“无损”,而且“增益”。

3、符合政企个性化需求让技术落地更具现实价值

在最终面向单个客户落地时,大数据解决方案还需要真正贴合这个客户的实际需要,这是从技术到应用落地的“临门一脚”,毕竟,不论性能如何强悍,全栈体系如何完善灵活,落实到客户头上,最终还是需要符合业务实际,产生现实价值。

既要有能力,更需要契合,鲲鹏大数据解决方案就是这么做的。

2019年,江苏省基于鲲鹏架构打造了全国首个省区市县三级政务大数据,未来将有越来越多的政务系统可以由自主可靠的鲲鹏计算平台来承载;

在广西,区内首个鲲鹏产业生态云项目——“壮美广西·玉林政务云(鲲鹏云)”已于不久前上线,这是该市全面推广应用广西数字政务一体化平台的体现,而其推出的广西首个市级公共数据开放管理办法,就与鲲鹏的大数据解决方案紧密相关;

目光转到浙江,在鲲鹏生态落子浙江的过程中,浙江推动形成“用鲲鹏”的共识,城市被当成鲲鹏生态的“试验场”,杭州市政务云已经选用鲲鹏作为算力底座,基于鲲鹏技术架构的解决方案和应用在政府服务场景中得到广泛应用。

总得看来,仅有高高在上的技术而无法产生实际价值的大数据玩法已经行不通,鲲鹏大数据解决方案跨越技术与应用的鸿沟,已经在众多行业、场景和企业中实现落地。

电信行业三巨头中,中国移动已实现鲲鹏大数据解决方案规模商用,中国电信则基于鲲鹏打造了天翼云,中国联通则基于鲲鹏构建了天宫IT系统;政务方面,北京、广东、江苏、浙江、广西等政务云都出现鲲鹏身影,当下其已经成为首选技术路线;在金融行业,鲲鹏正在帮助银行系统加速完成国产化。

可以说,鲲鹏大数据解决方案有力推动了中国数字经济发展,尤其是信息技术应用创新的落地。

领先优势下, 鲲鹏三个角度出发为大数据技术落地“铺路”

1、走得更稳——回应数字时代重要的安全关切

因此,鲲鹏大数据解决方案在安全方面一直加大投入,最典型的,是在底层硬件而非软件层面进行安全保障——鲲鹏920处理器内置硬件加速、业界首创支持国密算法加速,这种CPU内置加速模块的做法,被称作“内生安全”,配合国密算法在技术上更为安全。

而与通常的大数据解决方案为了保证安全不得不让渡较多的性能随时监控系统运行不同,华为鲲鹏大数据解决方案内生安全的做法,做到了加密对业务性能的损耗低于5%——既解决安全痛点问题,也解决“为了安全需要”本身导致的痛点问题。

2、走得更顺——用兼容性保护既有数据软硬件投资

前文提到政务云大数据解决方案中,与现有的服务器的混合部署,这其中有一个十分重要的兼容性做法——由于鲲鹏大数据解决方案建立在鲲鹏处理器基础之上,而很多政企组织原有的软硬件投资都基于X86架构,所以鲲鹏要让技术的应用落地走得更顺,还需要在技术上完成对X86在部署层面的兼容,这样还能保护政企客户现有的数字化投资。

可以看到,当下的鲲鹏方案已经支持大数据组件TaiShan服务器与其他架构服务器混合部署。

以江苏电信为例,去年7月,其宣布成功上线全球首个基于鲲鹏处理器的运营商大数据平台。作为核心的业务系统,该大数据平台基于鲲鹏处理器的华为TaiShan服务器和开源Hadoop软件构建,承载着江苏电信所有生产系统的运行数据、存储及分析:

在项目进行过程中,双方携手完成基于鲲鹏处理器的开源Hadoop源代码编译,让关键的大数据业务组件在华为TaiShan服务器上的成功部署和运行,在原有集群上实现了传统架构服务器和TaiShan服务器融合部署。

这种兼容的做法,有效结合了江苏电信大数据业务特点和未来演进趋势,且充分发挥鲲鹏处理器的性能,提高了数据存储、计算等资源的使用效率。

3、走得更宽——生态开放才能让大数据拥有内生动力

鲲鹏生态的主要推动者华为一直强调的理念是“硬件开放、软件开源、使能合作伙伴”,在大数据解决方案中,这种理念同样得到了应用。

例如,在鲲鹏全栈方案中,顶层大数据平台就支持华为自研的FusionInsight大数据平台以及开源Apache、开源HDP/CDH、星环大数据平台,可以有效对接各类场景需要。今年8月,星环 科技 就发布了基于鲲鹏的大数据平台软硬件联合解决方案,由星环 科技 的TDH大数据平台提供软件层面优异的功能,由鲲鹏芯片提供硬件层面强大的性能,拥有极致性能、平滑迁移、丰富的场景支持以及快速部署多重优势,为行业创造价值。

此外,鲲鹏主导的数据虚拟化引擎openLooKeng开源,就支持跨数据格式、跨数据源、跨数据中心的海量分析,最终帮助方案的性能大幅度提升,典型的如北明数据资产管理平台V40就基于openLooKeng技术,解决了数据资产管理数据冗杂、标准不一、难以管理等痛点问题,为企业守护和挖掘数据的价值。

开放的生态,将帮助更多合作伙伴发展服务器和PC等计算产品,帮助构建高质量的基础软件生态,也让更多生态伙伴获得端、边、云的全场景开发能力,最终促进鲲鹏计算生态的繁荣,也加速大数据行业应用创新。

打好基础、做好标杆, 鲲鹏进入“强者恒强”周期

弥合技术与应用落地的鸿沟后,鲲鹏大数据解决方案拥有越来越多的政企实践,它们中大多数都是行业典型客户,本身既是大数据发展过程中的优质案例。

拥有这些客户资源的鲲鹏,实际上已经进入了强者恒强的发展周期,这不仅仅是因为它获得了诸多标杆合作案例、领先于行业,更重要的还在于,技术到应用实践的通路打通后,实践也将不断反馈技术,不断帮助鲲鹏锤炼自身的技术能力,从而形成有效的正反馈循环。

一旦这种循环形成,大数据解决方案就会进入“飞轮”式发展进程,越转越快、越难以停下,也很难以被后进者追赶,逐步成为政企客户最有竞争优势的选择。

更进一步来看,大数据服务从来都不是孤立存在的,在计算需求多样化的时代,鲲鹏计算产业生态的主要推动者华为在物联网、5G、AI等方面的能力和生态布局,无疑将帮助鲲鹏大数据解决方案有更多横向技术连接和融合的想象空间,满足更多政企客户潜在的创新业务需求。

总而言之,在以鲲鹏大数据解决方案为代表的优质案例引领下,数据与计算的时代正在加速到来,最终,“新算力”将推动“新基建”全面落地,带来“新经济”动能,更多政企客户将享受到技术带来的价值红利。

本文均来源于网络

曾响铃

1钛媒体、品途、人人都是产品经理等多家创投、 科技 网站年度十大作者;

2虎啸奖评委;

3作家:移动互联网+ 新常态下的商业机会等畅销书作者;

4《中国经营报》《商界》《商界评论》《销售与市场》等近十家报刊、杂志特约评论员;

5钛媒体、36kr、虎嗅、界面、澎湃新闻等近80家专栏作者;

6“脑艺人”(脑力手艺人)概念提出者,现演变为“自媒体”,成为一个行业;

7腾讯全媒派荣誉导师、多家 科技 智能公司传播顾问。

以上就是关于新华三集团简介全部的内容,包括:新华三集团简介、法本信息技术股份有限公司总部在深圳那个地方现在公司有多少人了、大数据处理的五大关键技术及其应用等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/8829288.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-22
下一篇 2023-04-22

发表评论

登录后才能评论

评论列表(0条)

保存