低压配电接地系统分为IT系统、TT系统、TN系统三种形式,而这三种接地方式非常容易混淆。今天就来说说这三种系统的原理、特点和适用范围,希望能对广大的电气人有所帮助。
一、定义
根据现行的国家标准《低压配电设计规范》(GB50054),低压配电系统有三种接地形式,即IT系统、TT系统、TN系统。
(1)、第一个字母表示电源端与地的关系
T-电源变压器中性点直接接地。
I-电源变压器中性点不接地,或通过高阻抗接地。
(2)、第二个字母表示电气装置的外露可导电部分与地的关系
T-电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点。
N-电气装置的外露可导电部分与电源端接地点有直接电气连接。
二、分别对IT系统、TT系统、TN系统进行全面剖析
1、IT系统
IT系统就是电源中性点不接地,用电设备外露可导电部分直接接地的系统。IT系统可以有中性线,但IEC强烈建议不设置中性线。因为如果设置中性线,在IT系统中N线任何一点发生接地故障,该系统将不再是IT系统。
图1 IT系统接线图
IT系统特点:
IT系统发生第一次接地故障时,仅为非故障相对地的电容电流,其值很小,外露导电部分对地电压不超过50V,不需要立即切断故障回路,保证供电的连续性;-发生接地故障时,对地电压升高173倍;-220V负载需配降压变压器,或由系统外电源专供;-安装绝缘监察器。使用场所:供电连续性要求较高,如应急电源、医院手术室等。
IT 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。地下矿井内供电条件比较差,电缆易受潮。
运用 IT 方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。但是,如果用在供电距离很长的情况下,供电线路对大地的分布电容就不能忽视了。
在负载发生短路故障或漏电使设备外壳带电时,漏电电流经大地形成架路,保护设备不一定动作,这是危险的。只有在供电距离不太长时才比较安全。这种供电方式在工地上很少见。
2、TT系统
TT系统就是电源中性点直接接地,用电设备外露可导电部分也直接接地的系统。通常将电源中性点的接地叫做工作接地,而设备外露可导电部分的接地叫做保护接地。
TT系统中,这两个接地必须是相互独立的。设备接地可以是每一设备都有各自独立的接地装置,也可以若干设备共用一个接地装置。
TT系统接线图
TT系统的主要优点是:
(1)、能抑制高压线与低压线搭连或配变高低压绕组间绝缘击穿时,低压电网出现的过电压。
(2)、对低压电网的雷击过电压有一定的泄漏能力。
(3)、与低压电器外壳不接地相比,在电器发生碰壳事故时,可降低外壳的对地电压,因而可减轻人身触电危害程度。
(4)、由于单相接地时接地电流比较大,可使保护装置(漏电保护器)可靠动作,及时切除故障。
TT系统的主要缺点是:
(1)、低、高压线路雷击时,配变可能发生正、逆变换过电压。
(2)、低压电器外壳接地的保护效果不及IT系统。
(3)、当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。
(4)、当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,因此TT系统难以推广。
(5)、TT系统接地装置耗用钢材多,而且难以回收、费工时、费料。
TT系统的应用:
TT系统由于接地装置就在设备附近,因此PE线断线的几率小,且容易被发现。
TT系统设备在正常运行时外壳不带电,故障时外壳高电位不会沿PE线传递至全系统。因此,TT系统适用于对电压敏感的数据处理设备及精密电子设备进行供电,在存在爆炸与火灾隐患等危险性场所应用有优势。
TT系统能大幅降低漏电设备上的故障电压,但一般不能降低到安全范围内。因此,采用TT系统必须装设漏电保护装置或过电流保护装置,并优先采用前者。
TT系统主要用于低压用户,即用于未装备配电变压器,从外面引进低压电源的小型用户。
3、TN系统
TN系统即电源中性点直接接地,设备外露可导电部分与电源中性点直接电气连接的系统。
在TN系统中,所有电气设备的外露可导电部分均接到保护线上,并与电源的接地点相连,这个接地点通常是配电系统的中性点。
TN系统的电力系统有一点直接接地,电气装置的外露可导电部分通过保护导体与该点连接。
TN系统通常是一个中性点接地的三相电网系统。其特点是电气设备的外露可导电部分直接与系统接地点相连,当发生碰壳短路时,短路电流即经金属导线构成闭合回路。形成金属性单相短路,从而产生足够大的短路电流,使保护装置能可靠动作,将故障切除。
如果将工作零线N重复接地,碰壳短路时,一部分电流就可能分流于重复接地点,会使保护装置不能可靠动作或拒动,使故障扩大化。
在TN系统中,也就是三相五线制中,因N线与PE线是分开敷设,并且是相互绝缘的,同时与用电设备外壳相连接的是PE线而不是N线。因此我们所关心的最主要的是PE线的电位,而不是N线的电位,所以在中重复接地不是对N线的重复接地。如果将PE线和N线共同接地,由于PE线与N线在重复接地处相接,重复接地点与配电变压器工作接地点之间的接线已无PE线和N线的区别,原由N线承担的中性线电流变为由N线和PE线共同承担,并有部分电流通过重复接地点分流。由于这样可以认为重复接地点前侧已不存在PE线,只有由原PE线及N线并联共同组成的PEN线,原TN-S系统所具有的优点将丧失,所以不能将PE线和N线共同接地。
将变压器的中性线接地引出地面,分成二根,一根为工作零线并保持绝缘,一根为保护接零与外壳相接。这就是所说的TN-S系统(即三相火线、一根零线、一根地线)。对于TN—S系统,重复接地就是对PE线的重复接地,其作用如下:(1)如不进行重复接地,当PE断线时,系统处于既不接零也不接地的无保护状态。而对其进行复重接地以后,当PE正常时,系统处于接零保护状态;当PE断线时,如果断线处在重复接地前侧,系统则处在接地保护状态。进行了重复接地的TN—S系统具有一个非常有趣的双重保护功能,即PE断线后由TN—S转变成TT系统的保护方式(PE断线在重复接地前侧)。 (2)当相线断线与大地发生短路时,由于故障电流的存在造成了PE线电位的升高,当断线点与大地间电阻较小时,PE线的电位很有可能远远超过安全电压。这种危险电压沿PE线传至各用电设备外壳乃至危及人身安全。而进行重复接地以后,由于重复接地电阻与电源工作接地电阻并联后的等效电阻小于电源工作接地电阻,使得相线断线接地处的接地电阻分担的电压增加,从而有效降低PE线对地电压,减少触电危险。 (3)PE线的重复接地可以降低当相线碰壳短路时的设备外壳对地的电压,相线碰壳时,外壳对地电压即等于故障点P与变压器中性点间的电压。假设相线与PE线规格一致,设备外壳对地电压则为110V。而PE线重复接地后,从故障点P起,PE线阻抗与重复接地电阻RE同工作接地电阻RA串联后的电阻相并联。在一般情况下,由于重复接地电阻RE同工作接地电阻RA串联后的电阻远大于PE线本身的阻抗,因而从P至变压器中性点的等效阻抗,仍接近于从P至变压器中性点的PE线本身的阻抗。如果相线与PE线规格一致,则P与变压器中性点间的电压UPO仍约为 110V,而此时设备外壳对地电压UP仅为故障P点与变压器中性点间的电压UPO 的一部分,可表示为:UP=UPO×RERA+RE 假设重复接地电阻RE为10Ω,工作接地电阻RA为4Ω,则UP=786V。 如果只是对N线重复接地,它不具有上述第(1)项与第(3)项作用,只具有上述第(2)项的作用。对于TN—S系统,其用电设备外壳是与PE线相接的,而不是N线。因此,我们所关心的更主要的是PE线的电位,而不是N线的电位,TN—S系统的重复接地不是对N线的重复接地。 如果将PE线和N线共同接地,由于PE线与N线在重复接地处相接,重复接地前侧( 接近于变压器中性点一侧)的PE线与N线已无区别,原由N线承担的全部中性线电流变为由N线和PE线共同承担(一小部分通过重复接地分流)。可以认为,这时重复接地前侧已不存在PE线,只有由原PE线及N线并联共同组成的PEN线,原TN—S系统实际上已变成了T N—C—S系统,原TN—S系统所具有的优点将丧失,故不能将PE线和N线共同接地。 在工程实践中,对于TN—S系统,很少将N线和PE线分别重复接地。其原因主要为: 1)将N线和PE线分别重复接地仅比PE线单独重复接地多一项作用,即可以降低当N线断线时产生的中性点电位的偏移作用,有利于用电设备的安全,但是这种作用并不一定十分明显,并且一旦工作零线重复接地,其前侧便不能采用漏电保护。 2)如果要将N线和PE线分别重复接地,为保证PE线电位稳定,避免受N线电位的影响,N线的重复接地必须与PE线的重复接地及建筑物的基础钢筋、埋地金属管道等所有进行了等电位连结的各接地体、金属构件和金属管道的地下部分保持足够的距离,最好为20m以上,而在实际施工中很难做到这一点。综上所述,由于实际施工的问题,TN-S系统在实际中安全性有打折扣。 IT系统特点(不引出中性线)-发生第一次接地故障时,接地故障电流仅为非故障相对地的电容电流,其值很小,外露导电部分对地电压不超过50V,不需要立即切断故障回路,保证供电的连续性;-发生接地故障时,对地电压升高173倍;-220V负载需配降压变压器,或由系统外电源专供;-安装绝缘监察器。使用场所:供电连续性要求较高,如应急电源、医院手术室等。 IT 方式供电系统 I 表示电源侧没有工作接地,或经过高阻抗接地。每二个字母 T 表示负载侧电气设备进行接地保护。 IT 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。地下矿井内供电条件比较差,电缆易受潮。运用 IT 方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。 但是,如果用在供电距离很长时,供电线路对大地的分布电容就不能忽视了。在负载发生短路故障或漏电使设备外壳带电时,漏电电流经大地形成架路,保护设备不一定动作,这是危险的。只有在供电距离不太长时才比较安全。这种供电方式在工地上很少见。
分几个原因。
医院因其工作的特殊性,医疗建筑也因此成为功能、结构相对复杂的民用建筑。医院的供配电方式与其他民用建筑有较大区别,尤其在医院的特殊环境里,漏电流对病人构成了潜在的危险,因此对电气安全设计提出了特殊而且严格的要求。尤其是那些生命攸关的场所,如外科手术室、重症监护室等地均需安装医用IT供电系统(IT指不接地供电系统,此系统俗称医用隔离电源),其目的就是为了保证对该场所内的医疗电器提供一个安全可靠的电源, 以确保病人的安全。
另外还有其他方面:但次要。
例如:
滤波抗干扰功能,可以去除三次谐波等干扰
三相隔离电源可以产生新的中性线,避免由于电网中性线不良造成设备运行不正常。
非线性负载引起的电流波形畸变可被隔离而不污染电网。
防止非线性负载的电流畸变影响到交流电源的正常工作及对电网产生污染,起到净化电网的作用。
在隔离变压器输入端采样,使得非线性负载电流的畸变不影响取样的准确性,得到能反应实际情况的控制信号。
监测单相或三相供电电网中绝缘电阻,用电负荷及设备状态
多种安装方式方便与其它设备进行配套
高可靠的人工智能保护墙技术运用
丰富的接口和通讯方式
安装简便空间占用小
看到你的追问。这个要看你的ups情况。我没有见到你的情况,只能大约回答,希望有帮助你。
大UPS的主输入一般都是三相三相,没有中性线输入,且UPS自身还带一个输出变压器将主电源与负载进行隔离;而旁路输入是三相四线,带中性线输入。这个中性线一般都是只经过UPS后就直接输出的,没有任何的隔离。如果要求对UPS进行电气隔离,或要求UPS上游和下游的接地系统不一致的情况下,就需要在旁路加一个隔离变压器。最新的技术是UPS内部的隔离变压器已经不再使用了,整流器采用IGBT整流,这是如果需要对UPS进行隔离,就需要在主路和旁路或者在UPS输出端加装隔离变压器。
TT方式供电系统指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT系统。第一个符号T表示电力系统中性点直接接地;第二个符号T表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。
IT系统是国际标准IEC60364区分了三类不同的接地系统,使用两个字母代号表示TN,TT和IT。第一个字母表示电源端与地的关系:T表示电源端有一点直接接地;I表示电源端所有带电部分不接地或有一点通过阻抗接地。
第二个字母表示电气装置的外露可导电部分与地的关系:T表示电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点;N表示电气装置的外露可导电部分与电源端接地有直接电气连接。
TN方式供电系统这种供电系统将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN表示。
TN-C方式供电系统用工作零线兼作接零保护线,可以称作保护中性线,可用PEN表示。TN-S方式供电系统把工作零线N和专用保护线PE严格分开的供电系统,称作TN-S供电系统。
TN-C-S方式供电系统在建筑施工临时供电中,如果前部分是TN-C方式供电,而施工规范规定施工现场必须采用TN-S方式供电系统,则可以在系统后部分现场总配电箱分出PE线。
扩展资料
TT系统适应于有中性线输出的单、三相没合用电的较大的村庄,加装上漏电保护装置,可收到较好的安全效果,有的建筑单位是采用TT系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量。
在lT系统内:电气装置带电导体与地绝缘,或电源的中性点经高阻抗接地;所有的外露导电部分和装置外导电部分经电气装置的接地极接地。
由于该系统出现第一次故障时故障电流小,电气设备金属外壳不会产生危险性的接触电压,因此可以不切断电源,使电气设备继续运行,并可通过报警装置及检查消除故障。
IT系统内发生第二次故障时应自动切断电源:当在另一相线或中性线上发生第二次故障时,必须快速切除故障。
参考资料来源:百度百科-tn-c-s系统
参考资料来源:百度百科-IT系统
参考资料来源:百度百科-TT系统
TN系统第一个符号 T 表示电源端有一点直接接地;第二个符号 T 表示电气装置的外露可导电部分与电源端接地有直接电气连接。
TT系统第一个符号 T 表示电源端有一点直接接地;第二个符号 T 表示电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点。
IT系统字母代表第一个符号I表示电源端所有带电部分不接地或有一点通过阻抗接地;第二个符号 T 表示电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点。
扩展资料:
IT 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。地下矿井内供电条件比较差,电缆易受潮。
运用 IT 方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。 但是,如果用在供电距离很长时,供电线路对大地的分布电容就不能忽视了。
根据 IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即 TT 、 TN 和 IT 系统,分述如下。
1 TT 方式供电系统TT 方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称 TT 系统。第一个符号 T 表示电力系统中性点直接接地;第二个符号 T 表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。在 TT 系统中负载的所有接地均称为保护接地,这种供电系统的特点如下。
(1)当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。
(2)当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,因此 TT 系统难以推广。
(3)TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。
现在有的建筑单位是采用 TT 系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量。
把新增加的专用保护线 PE 线和工作零线 N 分开,其特点是:①共用接地线与工作零线没有电的联系;②正常运行时,工作零线可以有电流,而专用保护线没有电流;③ TT 系统适用于接地保护占很分散的地方。
2 TN 方式供电系统 这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用 TN 表示。它的特点如下。
(1)一旦设备出现外壳带电,接零保护系统能将漏电电流上升为短路电流,这个电流很大,是 TT 系统的 53 倍,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。
(2)TN 系统节省材料、工时,在我国和其他许多国家广泛得到应用,可见比 TT 系统优点多。 TN 方式供电系统中,根据其保护零线是否与工作零线分开而划分为 TN-C 和 TN-S 等两种。
3 TN-C 方式供电系统 它是用工作零线兼作接零保护线,可以称作保护中性线,可用 NPE 表示
4 TN-S 方式供电系统 它是把工作零线 N 和专用保护线 PE 严格分开的供电系统,称作 TN-S 供电系统, TN-S 供电系统的特点如下。
(1)系统正常运行时,专用保护线上不有电流,只是工作零线上有不平衡电流。 PE 线对地没有电压,所以电气设备金属外壳接零保护是接在专用的保护线 PE 上,安全可靠。
(2)工作零线只用作单相照明负载回路。
(3)专用保护线 PE 不许断线,也不许进入漏电开关。
(4)干线上使用漏电保护器,工作零线不得有重复接地,而 PE 线有重复接地,但是不经过漏电保护器,所以 TN-S 系统供电干线上也可以安装漏电保护器。
(5)TN-S 方式供电系统安全可靠,适用于工业与民用建筑等低压供电系统。在建筑工程开工前的“三通一平”(电通、水通、路通和地平——必须采用 TN-S 方式供电系统。
5 TN-C-S 方式供电系统 在建筑施工临时供电中,如果前部分是 TN-C 方式供电,而施工规范规定施工现场必须采用 TN-S 方式供电系统,则可以在系统后部分现场总配电箱分出 PE 线, TN-C-S 系统的特点如下。
(1)工作零线 N 与专用保护线 PE 相联通,如图 1-5ND 这段线路不平衡电流比较大时,电气设备的接零保护受到零线电位的影响。 D 点至后面 PE 线上没有电流,即该段导线上没有电压降,因此, TN-C-S 系统可以降低电动机外壳对地的电压,然而又不能完全消除这个电压,这个电压的大小取决于 ND 线的负载不平衡的情况及 ND 这段线路的长度。负载越不平衡, ND 线又很长时,设备外壳对地电压偏移就越大。所以要求负载不平衡电流不能太大,而且在 PE 线上应作重复接地。
(2)PE 线在任何情况下都不能进入漏电保护器,因为线路末端的漏电保护器动作会使前级漏电保护器跳闸造成大范围停电。
(3)对 PE 线除了在总箱处必须和 N 线相接以外,其他各分箱处均不得把 N 线和 PE 线相联, PE 线上不许安装开关和熔断器,也不得用大顾兼作 PE 线。
通过上述分析, TN-C-S 供电系统是在 TN-C 系统上临时变通的作法。当三相电力变压器工作接地情况良好、三相负载比较平衡时, TN-C-S 系统在施工用电实践中效果还是可行的。但是,在三相负载不平衡、建筑施工工地有专用的电力变压器时,必须采用 TN-S 方式供电系统。
6 IT 方式供电系统 I 表示电源侧没有工作接地,或经过高阻抗接地。第二个字母 T 表示负载侧电气设备进行接地保护。
IT 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。地下矿井内供电条件比较差,电缆易受潮。运用 IT 方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。
但是,如果用在供电距离很长时,供电线路对大地的分布电容就不能忽视了。在负载发生短路故障或漏电使设备外壳带电时,漏电电流经大地形成架路,保护设备不一定动作,这是危险的。只有在供电距离不太长时才比较安全。这种供电方式在工地上很少见。
不是所有场合都一定要使用UPS电源,只有那些重要需要保护得设备供电才会采用UPS电源。
UPS电源是不间断供电设备,UPS有三大功能:1、稳压,2、 滤波 ,3、 不间断
如果你使用的设备需要实现以上三种保护,那么就建议你使用UPS电源供电。
UPS是不断电系统(Uninterruptible Power Supply)的简称,就是当停电时能够紧急取代市电,供应电力给设备,就如同紧急照明设备一样。但不断电系统的设计更精密,能使市电与电池或变流器之转换时间更短,弥补发电机或其它紧急电源中断时间过长之缺点,不断电系统并不是停电时才会动作,如遇到电压下陷、尖波、电压突波、噪声干扰、高(低)电压瞬时,足以影响设备正常运转的电力质量问题时,不断电系统均会自动稳压滤除噪声,提供给设备稳定且干净的电源环境。由于UPS功能及价格较其它紧急电源供应设备高,故一般均用于保护重要设备,例如计算机设备、监控仪器、消防设备、医疗仪器等,以满足计算机及各种精密仪器对电力质量之严格要求。目前UPS已被各高科技产业,计算机界认定为真正能彻底解决电源问题之必要设备。
2、为何要使用ups
我们就以计算机来说明这个问题,今天如果未使用不间断电源系统,那么当市电发生异常,将造成计算机宕机,甚至造成硬件故障,到时维修费将不可预期;但是存在计算机中的数据呢?可是有钱也买不到,所以为您的设备添购不间断电源系统,就如同买保险一样,有备无患。
这里必须附带说明的是,不间断电源系统并不是只有当停电时才有动作的,前面所提到的市电异常,包含了市电电压过低、过高、尖峰浪涌等,均能将电源稳压抑制,足以使设备正常运作,因此不间断电源系统能给用户带来全方位的保护工作。
3、不断电系统应用于何种设备?有无限制?
不断电系统,一般均应用于保护重要设备,例如:计算机设备,精密仪器,医疗仪器等,由于UPS研发设计以计算机为主,并非所有负载均适用,尤其是电感性负载,像电风扇、冷气机等家电均不适用,因为电感性负载会有反电动势的产生,对于离线式UPS会造成伤害。此外像复印机、激光打印机等启动电流较大的设备,因其瞬间启动电流大,若UPS容量不足时,易造成瞬间超载,一旦适逢市电中断时,UPS输出亦中断。平时UPS长期处于超载使用时,将缩短电子组件及UPS的寿命。。希望我的回答能够帮助您,还望采纳。
IT系统是一种低压配电系统,“保护接零系统”仅是片面的说法。
1、IT系统的定义:
电源中性点不接地,用电设备外露可导电部分直接接地的系统。IT系统可以有中性线,但IEC不建议设置中性线。因为如果设置中性线,在IT系统中N线任何一点发生接地故障,该系统将不再是IT系统。
2、IT系统各字母的含义:
T-电源变压器中性点直接接地。
I-电源变压器中性点不接地,或通过高阻抗接地。
3、IT系统的特点:
IT 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。
扩展资料:
国际标准IEC60364区分了三类不同的接地系统,IT系统只是其中的一类,另外两类为TN系统、TT系统。
1、TN系统与TT系统的含义:
TN系统即电源中性点直接接地,设备外露可导电部分与电源中性点直接电气连接的系统。在TN系统中,所有电气设备的外露可导电部分均接到保护线上,并与电源的接地点相连,这个接地点通常是配电系统的中性点。
TT系统就是电源中性点直接接地,用电设备外露可导电部分也直接接地的系统。通常将电源中性点的接地叫做工作接地,而设备外露可导电部分的接地叫做保护接地。
2、TN系统与TT系统的特点:
TN系统特点是电气设备的外露可导电部分直接与系统接地点相连,当发生碰壳短路时,短路电流即经金属导线构成闭合回路。形成金属性单相短路,从而产生足够大的短路电流,使保护装置能可靠动作,将故障切除。
TT系统能抑制高压线与低压线搭连或配变高低压绕组间绝缘击穿时低压电网出现的过电压,同时对低压电网的雷击过电压有一定的泄漏能力。与低压电器外壳不接地相比,在电器发生碰壳事故时,可降低外壳的对地电压,因而可减轻人身触电危害程度。
参考资料来源:百度百科-IT系统
以上就是关于it系统的优点全部的内容,包括:it系统的优点、IT系统的原理、为什么手术室电源要用隔离变压器 谁能给个详细的解释··等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)