生产和产出规模小。
中小型科技企业由于资本存量水平低,资信程度不高,筹措资金也相对困难,因此生产规模扩张缓慢,技术创新能力弱,在花色品种、质量、标准文化程度和技术含量等方面都难以与大型企业相比,生产规模相对较小。
中小企业要以市场为导向,实行自筹资金、自愿组合、自主经营、自负盈亏、自我发展、自我约束的知识密集型经济实体。简而言之,科技型中小企业是以创新为使命和生存手段的企业。
认清现实吧 中国大数据产业的痛点和困难
大数据作为一个新兴的产业,一直在处于舆论的风口浪尖。就像互联网+的概念一样,大数据被神话了,被送上了“宗教”的神坛。大数据企业总是有一个担心,生怕大数据被捧得的太高,将来可能会被摔的很惨。
2015年中国大数据产业的热度从贵阳大数据交易所开始,到9月国务院的2015第50号文《促进大数据发展行动纲要》进入高峰,相信10月份的乌镇互联网大会上,大数据还会是一个大的热点。
大数据论坛上,数据产品和解决方案被介绍的很多。数据给企业带来的具体价值、数据应用场景、大数据产业的痛点介绍的很少。中国大数据产业经历着很多痛苦,大数据产业前景很好,但是大数据企业却很难做大,很难实现质的飞跃。中国大数据产业的痛点和困难如下。
1 大数据企业众多而弱小,很难实现产业优势中国大数据企业大概有200多家,将近60%集中在北京,以小微企业为主,年销售额达到十亿人民币的企业几乎没有。大数据产业处于春秋时代早期,各家诸侯割地而立,每家占领了一块小的细分领域,很难做大,都面临着同行的激烈竞争,有的领域例如舆情监控已成为红海。
大数据企业人数大多在几十人到几百人,少有千人以上的企业。没有一家大数据企业可以统领一个行业,没有一家企业占有细分市场10%的份额,没有一家大数据企业建立了行业标准,领导行业发展。
中国大数据产业处于极度分散状态,优秀的人才分布在不同企业,很难形成人才合力。各家企业规模小,很难在企业做深做大,很难利用大数据帮助企业实现业务提升。大多数企业的工具和数据很难满足企业整体的数据要求,中国的数据挖掘和分析产品也很难和国外的产品进行竞争。
大数据产业如果要形成产业优势,必须需要一批领军企业。参考国外大数据产业,中国在大数据基础架构,数据产品,数据工具、数据清洗和数据挖掘、数据分析、数据人才都需要产生一批标杆企业。每个领军企业都规模应该在千人以上,销售额应该在百亿以上,否则很难形成技术和人才优势,也很难利用大数据帮助客户实现业务提升。
贵阳大数据交易所《2015年中国大数据交易白皮书》提到2014年中国大数据市场规模为767亿元。这个数字看上去不错,估计其实真正和大数据工具和大数据产品相关的不足20%(业务价值提升)。大多数的经费都用于大数据基础平台(存储和计算)、咨询、报告等和业务价值提升相关度不大的领域。中国大数据市场销售额大多数集中在传统的IT企业例如IBM,Oracle,EMC,Intel,华为,联想等。真正大数据企业所有市场份额加起来可能就在百亿元左右。
中国大数据企业规模过小,领军企业缺少,行业过于分散,这些都是制约中国大数据产业发展的因素,也是产业做大的一个痛点。
2 外部数据是一个个孤岛,数据价值低数据是大数据产业发展的基础,具有商业价值的数据可以帮助企业洞察客户、数字化运营、风险管控、精准营销、预测和决策等。具有商业价值的数据和商业分析真正能够帮助企业提升业务,创造出新的价值。
中国的大数据市场还不成熟,很多大数据企业拥的数据都是片段的数据,很难形成完整的,具有商业价值的数据。大数据市场的数据质量和企业的数据需求有较大的差距。外部数据大多处于孤岛状态,数据之间很少流动和整合;孤立、不流动、没有整合的数据很难帮到企业,很多需要数据的企业不得不从多个大数据企业采购数据,效率很低,采购来的数据价值不高,数据整合的难度较大,数据采购的整体费用过高。
大家都看到了数据分散的弊端,于是很多地方都建立了大数据交易市场,帮助大家进行数据交易和数据采购。由于缺少法律保护,很多企业不太想在交易市场进行数据交易,往往还是采用一对一的数据交易,这种交易方式可以保护交易双方的利益。具有商业价值的数据还在开发中,大数据交易市场,缺少大量可以进行交易的数据。大数据交易市场这种商业模式,还需要用很长的时间去证明。
中国质量最好的数据在金融行业、BAT、电信运营商,这些企业比较谨慎,很难向外部输出数据。这三大行业自身的主营业务也不在数据,其数据产品生产和输出的愿望也不强烈。政府的数据正在逐步开放,但是其数据质量、集中度、输出方式等多存在很大多挑战。在中国大规模的数据开放,至少需要3年时间才能达到商业应用要求。
3 大多数企业客户,对数据商业应用敏感度低大多数企业对数据有需求,但是其对数据商业敏感度很低。对数据商业应用的场景以及数据技术了解很少。即使是数据商业敏感度较高的银行,至少要沟通三次以上,其才能够建立起数据价值理念。其他行业例如制造业,房地产业,零售业,他们的数据商业敏感度更低。甚至万科的王石也大声疾呼,不要和房地产业谈大数据应用,房产行业数据还不全,很多还是手工数据。于是某个领先的电商开始帮助万科进行数据规划建设,研究大数据在房地产行业的应用。
已有的大数据企业商业案例中,大部分都是大数据企业主动去找客户谈合作,为企业提供数据产品、数据工具或数据技术,目的是帮助企业提升业务。但是这种商业模式很累,市场很难被引爆,被动的数据商业应用,往往和业务结合较弱,无法迅速帮助企业利用数据提升业务,同时也无法解决业务发展瓶颈。
企业内部人士深度了解业务需求,他们缺少的是市场数据和消费者反馈,缺少的数据分析方法和工具。企业内部人士更应该成为大数据商业应用的主力,参加一些行业活动,从需求出发,主动寻找数据和解决方案。移动互联网时代,商业竞争策略很清晰,一个是快,一个是要利用数据进行决策。
大数据产业的发展,不仅仅是大数据企业自身的事情,也是各家企业自身的事情。企业客户也应该依据业务需要,主动到市场寻找数据和解决方案,提升数据商业敏感度,从业务场景出发,寻找具有价值的数据。
4大数据技术和产品同业务结合深度不够市场上所有大数据企业和客户都面临一个难题,就是数据解决方案同客户业务结合的深度不够,数据对业务整体推动效果不如期望,这也是大数据产业爆发的一个痛点。由于外部数据质量、企业用户数据敏感度、企业管理方式、商业数据人才等问题,大数据解决方案很难和业务深度结合。
大数据核心价值就是揭示事务发展规律,帮助企业利用数据进行科学决策。目前大数据的商业应用领域主要集中在数据采集、数据存储、数据计算、用户画像、精准营销等领域。大数据最具商业价值的预测和辅助决策功能并没有被充分利用。特别是在重大战略决策方面,大数据的作用并不明显。企业的产品开发,市场策略,战略决策还是依靠过去的精英决策和经验主义。未来社会只有两类企业,一种是利用数据发展的企业,另外一种是不重视数据被淘汰的企业。
大数据企业如果想发展壮大,如果想成为行业领先的企业,其必须放弃短期利益,深入到客户的运营中去,了解客户的数据,了解客户的业务,了解客户的商业需求。同时利用数据了解客户,了解市场,了解业务场景。数据和业务深度结合的核心是掌握正确的数据、正确的方法、正确的工具。业务人员要懂数据,技术人员要懂业务。复合型数据人才是数据生意的关键,业务人员掌握数据技术的门槛较高,但是技术人员了解业务的门槛很低,复合性人才倾向于从技术人才培养开始。
企业内部的数据人才和大数据企业的数据人才需要互相学习,了解对方环境和需求,在同一个平台上进行对话和沟通。数据团队需要深入了解业务场景和背后的规律,从业务出发,从场景出发,从数据出发,将大数据解决方案同业务深度结合,利用数据推动业务发展,发挥大数据预测规律的核心价值。
5 专业数据挖掘工具和人才缺失传统的数据挖掘工具和BI系统存在很久了,通过各类报表展示,让管理层了解企业运营信息,过去的确帮助企业提高管理水平,达到了预期目的。
在大数据时代,企业需要的是实时数据,需要的是高效工具,需要的是决策支持和预测。传统的数据挖掘工具的性能和灵活性已经不能满足企业的需要,另外非机构化数据的应用也对传统数据工具提出了挑战。BI领域中的SAS,SPSS,TD等数据工具越来越被边缘化,R语言正在成为数据统计和可视化的新宠。
数据的时间价值正在得到重视,特别是金融企业,所有的业务部门都期望在最短的时间里,看到资金使用情况,客户交易情况,风险管控情况。企业越早了解信息,就会越早进行决策,时间就是Money。过去数据需求可能是T+5或者T+30,现在的数据需求往往是T+1或者T+0,数据实时性、准确性、相关度被提到了一个非常重要的地位。业务的需求已经很明显了,但是数据工具和人才却是一个很大的挑战。
中国200多家大数据企业,看到了大数据产业的曙光,看到了大数据产业的价值,同时也在经历着大数据企业的痛苦。大数据产业发展很快,市场正在逐步变大,但是其产业优势不明显,优势企业很少,数据商业化较慢,市场还不成熟,客户数据商业敏感度较低,缺乏高质量数据工具和人才。所有大数据企业内心的感受就是,站在了时代的风口,选对了方向和行业,但是发展壮大还是很难。200多家大数据企业正在努力耕耘着大数据产业,痛并快乐着。
以上是小编为大家分享的关于认清现实吧 中国大数据产业的痛点和困难的相关内容,更多信息可以关注环球青藤分享更多干货
你是否经常面临这样的困境——项目因为失控而受挫,不得不向客户不断反馈坏的消息;客户有时并不了解他们真正的需求是什么,但却让你跌入需求不断变化的怪圈。这可能是许多IT企业所经历过的。
IT企业正处于高速发展并以项目为主导的环境中。企业每天所面对的不仅仅是几个大型项目,而将是成百上千不断发生和进行的项目。产生这种变化的因素是多方面的,包括:客户需求的不断提高导致产品生命周期缩短、产品开发项目数量大增;新技术导致了对研究和开发项目需求的增加;为了提高业务赢利能力,改进业务模式的项目需求大增等。
在这种多项目并发、高技术、快速变化、资源有限的环境下,失败和挫折是经常发生的。由于企业总是需要努力满足不断变化的市场需求和面对各种挑战,因此需要考虑实施新的管理方法。可采取的方法之一——按项目管理,将对企业中项目的执行和组织文化的变化产生深刻的影响。
当前,传统项目管理正在经历着一场革命性的变革。1996年美国项目管理学会颁布的项目管理知识体系中,定义项目管理为“将各种知识、工具、技能应用于项目工作,以达到或超过项目干系方对项目的要求和期望”。这种定义虽然至今仍适用于任何一个项目,但它实质上是从管理大型项目的角度定义的。企业现在所面临的是如何利用上述定义的相同原理,管理大量不断持续发生的项目。
最近几年,“将传统的项目管理方法应用于全面的企业运作”,即“按项目管理”的观念在国际上崭露头角并且十分有效。按项目管理是传统项目管理方法和技术在企业所有项目(无论大小)上的综合应用,并冲破了传统的管理方式和界限。按项目管理意味着项目观念渗透到企业所有的业务领域,包括市场、工程、质量管理、战略规划、人力资源管理、组织变革、业务管理等。项目管理者也不再被认为仅仅是项目的执行者,他们应能胜任更为复杂的工作,参与需求确定、项目选择、项目计划直至项目收尾的全过程,在时间、成本、质量、风险、合同、采购、人力资源等方面对项目进行全方位管理。
为了能更好地完成某一项目的目标,需要来自不同职能部门的项目成员在最佳的协作和交互环境下工作,并受到相同的利益驱动。然而,在传统的组织管理结构中,资源归某一特定职能单位的经理管理。这种结构显然不利于形成这种环境,一些IT企业在同一产品的开发、市场、销售和满足客户方面的协调工作总不是那么顺畅。在项目型的管理结构中,资源仍归属于各自的职能部门,只是临时被借调给一个或多个项目团队使用。这种理想化的结构使得项目可以由单独的项目经理更有效地进行管理,而不会受到职能型组织中存在的那种相对狭义的利益范围的束缚,从而确保资源拥有最高水准的协作能力,并增强项目团队成员实现项目目标的使命感。
通常,许多项目型组织(如系统集成商)应设立专门的项目管理小组或部门,而这些小组或部门中又包括有项目经理、计划人员、控制人员和其他项目支持人员(如长天集团、东方网景等正朝着该方向发展)。他们的主要职责是提供项目指导、管理并支持所有主要项目的计划和执行。
按项目管理整个企业,要求企业文化必须能够接纳这种新的思维方式。员工对自身工作的认识,应从“满足部门的要求”,转向“满足项目的要求”。
按项目管理涉及了项目管理的专业知识、综合管理知识和应用领域的专用知识。其中,项目管理的专业知识是一套独特的知识和技术体系。综合管理则包括了诸如计划、组织、人员管理、企业业务的执行和控制等。应用领域的专用知识包括了不同项目类型所特有的一些共性要素,应用领域可按技术特征(如软件开发、系统集成)或管理特征(如承包项目、自主新产品开发)定义。
现阶断大数据的困难主要在如下几点:
1、信息壁垒降低了大数据产业资源配置效率。大数据产业发展必须实现数据信息的自由流动和共享,如果数据不开放、不共享,数据整合就不能实现,数据价值也会大大降低。
2、 政府部门是社会信息的主要控制者,其信息又分别被不同部门和区域控制,而不同部门和区域间的数据标准各异,信息资源也就难以实现共享。
3、数据安全管理薄弱增加了大数据产业的发展风险。
数据安全和隐私保护是大数据产业发展的世界性难题,这主要体现在三个方面:其一,数据的海量存储增加了数据安防的难度,可能造成大量数据损坏或丢失,造成难以想象的后果;其二,在大数据时代,数据的多元性和复杂性要求人们形成更强的安全意识,但现实中不论企业还是个人的安全意识还没有从传统的非信息时代转变过来,存在巨大潜在风险;其三,网络攻击带来了数据安全风险,随着大数据在政府、金融、公共事业等领域的广泛运用,数据泄露带来的损失远远超出行业范畴,而是全局性的国家安全问题。
以上就是关于中小型科技企业面临的普遍问题是什么全部的内容,包括:中小型科技企业面临的普遍问题是什么、认清现实吧 中国大数据产业的痛点和困难、做项目什么最重要什么最困难等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)