标签或关键词:IT 信息系统系统软件 管理软件 软件应用发展史企业管理安全问题 信息化建设 战略管理全面预算绩效管理 生产管理咨询管理咨询制造业ERP IT信息系统软件的生存和运行的环境决定了其存在和面临以下安全问题:首先,IT信息系统软件必须依附计算机设备及其存储设备及在此台计算机设备运行的 *** 作系统,因此计算机硬件设备安全就会影响IT信息系统软件正常运行。特别是计算机主机故障、存储设备故障(如硬盘)、或直接影响计算机 *** 作系统故障,因而引发IT信息系统软件不能正常运行或装有IT信息系统软件的计算机完全不能开机的情况。此类安全问题我们归结为计算机硬件设备安全问题。对于此类问题,我们可以以双机热备份的方式来进行解决。当一台机发生故障时,另一台机仍能正常运行,以支持IT信息系统软件正常服务。第二,数据及数据库安全。IT信息系统软件,一般通过专用的数据库来存储和处理数据(如ORACLE,Informix、Sybase等)。而数据库本身也是一个应用软件,它也必需依附计算机的 *** 作系统才能正常运行,如 *** 作系统发生故障,或者数据库软件本身发生故障,就会导致IT信息系统软件所处理数据丢失的问题。对数据库软件发生故障的安全问题,我们可以采取IT信息系统提供的数据备份和恢复功能来应对。如果IT信息系统软件有非常多和重要的数据,且系统响应要求实时性很高,应另外还需要一个独立多硬盘存储设备,并以镜像的方式(如RADID5)存储IT信息系统软件的 *** 作数据。即算某块硬盘发生故障时,因其他硬盘保留此数据,所以能保证其数据不会丢。同时通过热插拨更换故障硬盘,丝毫不影响数据的存储。第三,网络安全。随着网络技术的成熟,企业规模和管理复杂度,以及市场竞争的要求,现在的IT信息系统软件不再是单机版应用,更多是基于网络的应用,特别由于互联网的开放及低廉成本,得到广泛的应用推广。因此网络环境也会给IT信息化系统带来安全问题。网络安全具体包括以下几类:1、 IT信息系统所在的计算机设备(服务器) *** 作系统管理问题。是否有防病毒软件或专机专用(规定不能上此台机上上互联网或私自 *** 作),如没有,就易受网络病毒感染,致使不能正常提供服务; *** 作系统不使用的端口,是否被封闭, *** 作系统的漏洞是否经及时更新升级而解决;因为这些都是易被网络非法用户攻击的地方,如 *** 作系统被攻破,数据和系统安全就无法保障。同时可以采取物理隔断、防火墙、IDS等硬件设备防止被攻击。2、 网络传输安全:数据在网络上传输极易被非法用户截取及篡改。我们可以通过对数据进行加密传输或利用SSL技术对数据进行超强度加密传输,或通过CA证书技术,对客户端和服务器双方身份进行合法验证,或通过***技术在互联网上构建虚拟私有网,DDN或X25等专用网络来确保数据在网络传输的安全。3、 客户端合法性安全问题。为防止非法客户访问和使用IT信息系统,我们可以使用诸如用户名和密码校验登录、UKEY、IP限制、指纹识别、CA证书等方式,确保用户是合法用户。 第四,IT信息系统功能和数据安全问题。在确认为合法用户后,登录系统,用户可以正常访问系统和应用功能及相关数据,但这种权利是通过岗位权限、功能权限、数据权限的等规则的约定来进行 *** 作,即是在受控和受限的情况才能被使用,换句话说,授权能使用和访问的,才被允许。另外,对于IT信息系统软件管理员,这一特殊群体,只涉及对系统本身的维护工作,而不参与业务运作,因此系统管理员的访问系统业务功能和数据的权利应该被严格的限制。
IT就是互联网技术:互联网技术指在计算机技术的基础上开发建立的一种信息技术。互联网技术的普遍应用,是进入信息社会的标志。不同的人和不同的书上对此有不同解释。
IT更新意味着升级到更快、更直观的现有平台版本。然而,当不同硬件能够更好地提供功能、显著提升性能或获得更高可靠性时,可以考虑在迁移过程同时升级硬件。
扩展资料:
IT价值
IT设备为组织创造价值,在于IT数据存储和利用,应该权衡其内在价值,而不是作为二手设备卖掉的价格。最佳硬件更换时间是当服务器内在价值降低并且工作价值也下降时。自动化资产管理工具可以帮助用户准确评估折旧率。
IT设备的内在价值会因为其他组织需要备件和零部件而保持,但这并不是二手IT系统的唯一市场。降低IT刷新,将最重要的工作负载运行在最新的IT硬件上。与出售或清理旧系统相反,IT部门可以使用这些硬件来承载非关键工作业务,直到它们真的变成老古董。
参考资料来源:百度百科-IT
系统安全的维护,建议从制度和系统本身建设(如果是建设阶段的信息系统)两个方面来进行,一个是的信息系统管理制度的制定,可以找有经验的外包协助制度的完善,单位内部也要致力于规范的落实,二是信息系统的建设,信息系统建设的软硬件的采购,运维人员日常的维护,包括使用的运维管理系统,桌面管理系统,为信息系统的安全提供软件层面的保障,信息系统管理制度的落实提供人员维护方面的保障。 像这方面的厂家有挺多的,之前有了解一家做ITmaster系统的上海公司
it安保权限为适用于公司开发和管理的各应用信息系统。包括OA协同办公系统、ERP管理软件、财务软件、企业邮箱及网站系统等。信息技术IT安全是指用于保护组织数字资产的方法、工具以及人员。
堡垒机的作用是对运维人员的细粒度访问控制、运维过程的步步管控、全方位的 *** 作审计,实现运维过程的“事前预防、事中控制、事后审计”,上讯信息的堡垒机在运维管控方面做的比较突出,有很好的研发技术支持。
随着互联网的不断发展,为了保护我们的信息在网络上的安全性,通常都会基于安全算法和密钥来实现的。今天,IT培训就通过案例分析来了解一下关于安全密钥的算法问题。
DES算法简介
DES(DataEncryptionStandard)是目前为流行的加密算法之一。DES是对称的,也就是说它使用同一个密钥来加密和解密数据。
DES还是一种分组加密算法,该算法每次处理固定长度的数据段,称之为分组。DES分组的大小是64位,如果加密的数据长度不是64位的倍数,可以按照某种具体的规则来填充位。
从本质上来说,DES的安全性依赖于虚假表象,从密码学的术语来讲就是依赖于“混乱和扩散”的原则。混乱的目的是为隐藏任何明文同密文、或者密钥之间的关系,而扩散的目的是使明文中的有效位和密钥一起组成尽可能多的密文。两者结合到一起就使得安全性变得相对较高。
DES算法具体通过对明文进行一系列的排列和替换 *** 作来将其加密。过程的关键就是从给定的初始密钥中得到16个子密钥的函数。要加密一组明文,每个子密钥按照顺序(1-16)以一系列的位 *** 作施加于数据上,每个子密钥一次,一共重复16次。每一次迭代称之为一轮。要对密文进行解密可以采用同样的步骤,只是子密钥是按照逆向的顺序(16-1)对密文进行处理。
计算16个子密钥
上面提到DES算法的一步就是从初始密钥中计算得出16个子密钥。DES使用一个56位的初始密钥,但是这里提供的是一个64位的值,这是因为在硬件实现中每8位可以用于奇偶校验,在软件实现中多出的位只是简单的忽略掉。要获得一个56位的密钥,可以执照表1的方式执行密钥转换。
DES算法的实现
考虑到DES算法中涉及的位 *** 作很多,因此DES算法通常都是在硬件中实现。DES算法中的图表和术语(通过线、框画的流程图,以及诸如S盒、P盒这样的术语)使其更倾向于在硬件中实现,当然,软件实现也有它的价值所在。在软件开发中,通过几种基本的指令 *** 作来帮助实现DES中的各种置换、转换以及替换 *** 作都是很有效的。
#云原生背景#
云计算是信息技术发展和服务模式创新的集中体现,是信息化发展的重要变革和必然趋势。随着“新基建”加速布局,以及企业数字化转型的逐步深入,如何深化用云进一步提升云计算使用效能成为现阶段云计算发展的重点。云原生以其高效稳定、快速响应的特点极大地释放了云计算效能,成为企业数字业务应用创新的原动力,云原生进入快速发展阶段,就像集装箱加速贸易全球化进程一样,云原生技术正在助力云计算普及和企业数字化转型。
云原生计算基金会(CNCF)对云原生的定义是:云原生技术有利于各组织在公有云、私有云和混合云等新型动态环境中,构建和运行可d性扩展的应用。云原生的代表技术包括容器、服务网格、微服务、不可变基础设施和声明式编程API。
#云安全时代市场发展#
云安全几乎是伴随着云计算市场而发展起来的,云基础设施投资的快速增长,无疑为云安全发展提供土壤。根据 IDC 数据,2020 年全球云安全支出占云 IT 支出比例仅为 11%,说明目前云安全支出远远不够,假设这一比例提升至 5%,那么2020 年全球云安全市场空间可达 532 亿美元,2023 年可达 1089 亿美元。
海外云安全市场:技术创新与兼并整合活跃。整体来看,海外云安全市场正处于快速发展阶段,技术创新活跃,兼并整合频繁。一方面,云安全技术创新活跃,并呈现融合发展趋势。例如,综合型安全公司 PaloAlto 的 Prisma 产品线将 CWPP、CSPM 和 CASB 三个云安全技术产品统一融合,提供综合解决方案及 SASE、容器安全、微隔离等一系列云上安全能力。另一方面,新兴的云安全企业快速发展,同时,传统安全供应商也通过自研+兼并的方式加强云安全布局。
国内云安全市场:市场空间广阔,尚处于技术追随阶段。市场规模上,根据中国信通院数据,2019 年我国云计算整体市场规模达 13345亿元,增速 386%。预计 2020-2022 年仍将处于快速增长阶段,到 2023 年市场规模将超过 37542 亿元。中性假设下,安全投入占云计算市场规模的 3%-5%,那么 2023 年中国云安全市场规模有望达到 1126 亿-1877 亿元。技术发展上,中国在云计算的发展阶段和云原生技术的程度上与海外市场还有一定差距。国内 CWPP 技术应用较为广泛,对于 CASB、CSPM 一些新兴的云安全技术应用较少。但随着国内公有云市场的加速发展,云原生技术的应用越来越广泛,我们认为CASB、SCPM、SASE 等新兴技术在国内的应用也将越来越广泛。
#云上安全呈原生化发展趋势#
云原生技术逐渐成为云计算市场新趋势,所带来的安全问题更为复杂。以容器、服务网格、微服务等为代表的云原生技术,正在影响各行各业的 IT 基础设施、平台和应用系统,也在渗透到如 IT/OT 融合的工业互联网、IT/CT 融合的 5G、边缘计算等新型基础设施中。随着云原生越来越多的落地应用,其相关的安全风险与威胁也不断的显现出来。Docker/Kubernetes 等服务暴露问题、特斯拉 Kubernetes 集群挖矿事件、Docker Hub 中的容器镜像被“投毒”注入挖矿程序、微软 Azure 安全中心检测到大规模 Kubernetes 挖矿事件、Graboid 蠕虫挖矿传播事件等一系列针对云原生的安全攻击事件层出不穷。
从各种各样的安全风险中可以一窥云原生技术的安全态势,云原生环境仍然存在许多安全问题亟待解决。在云原生技术的落地过程中,安全是必须要考虑的重要因素。
#云原生安全的定义#
国内外各组织、企业对云原生安全理念的解释略有差异,结合我国产业现状与痛点,云原生与云计算安全相似,云原生安全也包含两层含义:“面向云原生环境的安全”和“具有云原生特征的安全”。
面向云原生环境的安全,其目标是防护云原生环境中的基础设施、编排系统和微服务的安全。这类安全机制,不一定具备云原生的特性(比如容器化、可编排),它们可以是传统模式部署的,甚至是硬件设备,但其作用是保护日益普及的云原生环境。
具有云原生特征的安全,是指具有云原生的d性敏捷、轻量级、可编排等特性的各类安全机制。云原生是一种理念上的创新,通过容器化、资源编排和微服务重构了传统的开发运营体系,加速业务上线和变更的速度,因而,云原生系统的种种优良特性同样会给安全厂商带来很大的启发,重构安全产品、平台,改变其交付、更新模式。
#云原生安全理念构建#
为缓解传统安全防护建设中存在的痛点,促进云计算成为更加安全可信的信息基础设施,助力云客户更加安全的使用云计算,云原生安全理念兴起,国内外第三方组织、服务商纷纷提出以原生为核心构建和发展云安全。
Gartner提倡以云原生思维建设云安全体系
基于云原生思维,Gartner提出的云安全体系覆盖八方面。其中,基础设施配置、身份和访问管理两部分由云服务商作为基础能力提供,其它六部分,包括持续的云安全态势管理,全方位的可视化、日志、审计和评估,工作负载安全,应用、PaaS 和 API 安全,扩展的数据保护,云威胁检测,客户需基于安全产品实现。
Forrester评估公有云平台原生安全能力
Forrester认为公有云平台原生安全(Public cloud platform native security, PCPNS)应从三大类、37 个方面去衡量。从已提供的产品和功能,以及未来战略规划可以看出,一是考察云服务商自身的安全能力和建设情况,如数据中心安全、内部人员等,二是云平台具备的基础安全功能,如帮助和文档、授权和认证等,三是为用户提供的原生安全产品,如容器安全、数据安全等。
安全狗以4项工作防护体系建设云原生安全
(1)结合云原生技术的具体落地情况开展并落实最小权限、纵深防御工作,对于云原生环境中的各种组成部分,均可贯彻落实“安全左移”的原则,进行安全基线配置,防范于未然。而对于微服务架构Web应用以及Serverless应用的防护而言,其重点是应用安全问题。
(2)围绕云原生应用的生命周期来进行DevSecOps建设,以当前的云原生环境的关键技术栈“K8S + Docker”举例进行分析。应该在容器的全生命周期注重“配置安全”,在项目构建时注重“镜像安全”,在项目部署时注重“容器准入”,在容器的运行环境注重云计算的三要素“计算”“网络”以及“存储”等方面的安全问题。
(3)围绕攻击前、中、后的安全实施准则进行构建,可依据安全实施准则对攻击前、中、后这三个阶段开展检测与防御工作。
(4)改造并综合运用现有云安全技术,不应将“云原生安全”视为一个独立的命题,为云原生环境提供更多支持的主机安全、微隔离等技术可赋能于云原生安全。
#云原生安全新型风险#
云原生架构的安全风险包含云原生基础设施自身的安全风险,以及上层应用云原生化改造后新增和扩大的安全风险。云原生环境面临着严峻的安全风险问题。攻击者可能利用的重要攻击面包括但不限于:容器安全、编排系统、软件供应链等。下面对重要的攻击面安全风险问题进行梳理。
#云原生安全问题梳理#
问题1:容器安全问题
在云原生应用和服务平台的构建过程中,容器技术凭借高d性、敏捷的特性,成为云原生应用场景下的重要技术支撑,因而容器安全也是云原生安全的重要基石。
(1)容器镜像不安全
Sysdig的报告中提到,在用户的生产环境中,会将公开的镜像仓库作为软件源,如最大的容器镜像仓库Docker Hub。一方面,很多开源软件会在Docker Hub上发布容器镜像。另一方面,开发者通常会直接下载公开仓库中的容器镜像,或者基于这些基础镜像定制自己的镜像,整个过程非常方便、高效。然而,Docker Hub上的镜像安全并不理想,有大量的官方镜像存在高危漏洞,如果使用了这些带高危漏洞的镜像,就会极大的增加容器和主机的入侵风险。目前容器镜像的安全问题主要有以下三点:
1不安全的第三方组件
在实际的容器化应用开发过程当中,很少从零开始构建镜像,而是在基础镜像之上增加自己的程序和代码,然后统一打包最终的业务镜像并上线运行,这导致许多开发者根本不知道基础镜像中包含多少组件,以及包含哪些组件,包含的组件越多,可能存在的漏洞就越多。
2恶意镜像
公共镜像仓库中可能存在第三方上传的恶意镜像,如果使用了这些恶意镜像来创建容器后,将会影响容器和应用程序的安全
3敏感信息泄露
为了开发和调试的方便,开发者将敏感信息存在配置文件中,例如数据库密码、证书和密钥等内容,在构建镜像时,这些敏感信息跟随配置文件一并打包进镜像,从而造成敏感信息泄露
(2)容器生命周期的时间短
云原生技术以其敏捷、可靠的特点驱动引领企业的业务发展,成为企业数字业务应用创新的原动力。在容器环境下,一部分容器是以docker的命令启动和管理的,还有大量的容器是通过Kubernetes容器编排系统启动和管理,带来了容器在构建、部署、运行,快速敏捷的特点,大量容器生命周期短于1小时,这样一来容器的生命周期防护较传统虚拟化环境发生了巨大的变化,容器的全生命周期防护存在很大变数。对防守者而言,需要采用传统异常检测和行为分析相结合的方式,来适应短容器生命周期的场景。
传统的异常检测采用WAF、IDS等设备,其规则库已经很完善,通过这种检测方法能够直观的展示出存在的威胁,在容器环境下,这种方法仍然适用。
传统的异常检测能够快速、精确地发现已知威胁,但大多数未知威胁是无法通过规则库匹配到的,因而需要通过行为分析机制来从大量模式中将异常模式分析出来。一般来说,一段生产运营时间内的业务模式是相对固定的,这意味着,业务行为是可以预测的,无论启动多少个容器,容器内部的行为总是相似的。通过机器学习、采集进程行为,自动构建出合理的基线,利用这些基线对容器内的未知威胁进行检测。
(3)容器运行时安全
容器技术带来便利的同时,往往会忽略容器运行时的安全加固,由于容器的生命周期短、轻量级的特性,传统在宿主机或虚拟机上安装杀毒软件来对一个运行一两个进程的容器进行防护,显示费时费力且消耗资源,但在黑客眼里容器和裸奔没有什么区别。容器运行时安全主要关注点:
1不安全的容器应用
与传统的Web安全类似,容器环境下也会存在SQL注入、XSS、RCE、XXE等漏洞,容器在对外提供服务的同时,就有可能被攻击者利用,从而导致容器被入侵
2容器DDOS攻击
默认情况下,docker并不会对容器的资源使用进行限制,默认情况下可以无限使用CPU、内存、硬盘资源,造成不同层面的DDOS攻击
(4)容器微隔离
在容器环境中,与传统网络相比,容器的生命周期变得短了很多,其变化频率也快很多。容器之间有着复杂的访问关系,尤其是当容器数量达到一定规模以后,这种访问关系带来的东西向流量,将会变得异常的庞大和复杂。因此,在容器环境中,网络的隔离需求已经不仅仅是物理网络的隔离,而是变成了容器与容器之间、容器组与宿主机之间、宿主机与宿主机之间的隔离。
问题2:云原生等保合规问题
等级保护20中,针对云计算等新技术、新应用领域的个性安全保护需求提出安全扩展要求,形成新的网络安全等级保护基本要求标准。虽然编写了云计算的安全扩展要求,但是由于编写周期很长,编写时主流还是虚拟化场景,而没有考虑到容器化、微服务、无服务等云原生场景,等级保护20中的所有标准不能完全保证适用于目前云原生环境;
通过安全狗在云安全领域的经验和具体实践,对于云计算安全扩展要求中访问控制的控制点,需要检测主机账号安全,设置不同账号对不同容器的访问权限,保证容器在构建、部署、运行时访问控制策略随其迁移;
对于入侵防范制的控制点,需要可视化管理,绘制业务拓扑图,对主机入侵进行全方位的防范,控制业务流量访问,检测恶意代码感染及蔓延的情况;
镜像和快照保护的控制的,需要对镜像和快照进行保护,保障容器镜像的完整性、可用性和保密性,防止敏感信息泄露。
问题3:宿主机安全
容器与宿主机共享 *** 作系统内核,因此宿主机的配置对容器运行的安全有着重要的影响,比如宿主机安装了有漏洞的软件可能会导致任意代码执行风险,端口无限制开放可能会导致任意用户访问的风险。通过部署主机入侵监测及安全防护系统,提供主机资产管理、主机安全加固、风险漏洞识别、防范入侵行为、问题主机隔离等功能,各个功能之间进行联动,建立采集、检测、监测、防御、捕获一体化的安全闭环管理系统,对主机进行全方位的安全防护,协助用户及时定位已经失陷的主机,响应已知、未知威胁风险,避免内部大面积主机安全事件的发生。
问题4:编排系统问题
编排系统支撑着诸多云原生应用,如无服务、服务网格等,这些新型的微服务体系也同样存在着安全问题。例如攻击者编写一段代码获得容器的shell权限,进而对容器网络进行渗透横移,造成巨大损失。
Kubernetes架构设计的复杂性,启动一个Pod资源需要涉及API Server、Controller、Manager、Scheduler等组件,因而每个组件自身的安全能力显的尤为重要。API Server组件提供的认证授权、准入控制,进行细粒度访问控制、Secret资源提供密钥管理及Pod自身提供安全策略和网络策略,合理使用这些机制可以有效实现Kubernetes的安全加固。
问题5:软件供应链安全问题
通常一个项目中会使用大量的开源软件,根据Gartner统计至少有95%的企业会在关键IT产品中使用开源软件,这些来自互联网的开源软件可能本身就带有病毒、这些开源软件中使用了哪些组件也不了解,导致当开源软件中存在0day或Nday漏洞,我们根本无法获悉。
开源软件漏洞无法根治,容器自身的安全问题可能会给开发阶段带的各个过程带来风险,我们能做的是根据SDL原则,从开发阶段就开始对软件安全性进行合理的评估和控制,来提升整个供应链的质量。
问题6:安全运营成本问题
虽然容器的生命周期很短,但是包罗万象。对容器的全生命周期防护时,会对容器构建、部署、运行时进行异常检测和安全防护,随之而来的就是高成本的投入,对成千上万容器中的进程行为进程检测和分析,会消耗宿主机处理器和内存资源,日志传输会占用网络带宽,行为检测会消耗计算资源,当环境中容器数量巨大时,对应的安全运营成本就会急剧增加。
问题7:如何提升安全防护效果
关于安全运营成本问题中,我们了解到容器安全运营成本较高,我们该如何降低安全运营成本的同时,提升安全防护效果呢?这就引入一个业界比较流行的词“安全左移”,将软件生命周期从左到右展开,即开发、测试、集成、部署、运行,安全左移的含义就是将安全防护从传统运营转向开发侧,开发侧主要设计开发软件、软件供应链安全和镜像安全。
因此,想要降低云原生场景下的安全运营成本,提升运营效率,那么首先就要进行“安全左移”,也就是从运营安全转向开发安全,主要考虑开发安全、软件供应链安全、镜像安全和配置核查:
开发安全
需要团队关注代码漏洞,比如使用进行代码审计,找到因缺少安全意识造成的漏洞和因逻辑问题造成的代码逻辑漏洞。
供应链安全
可以使用代码检查工具进行持续性的安全评估。
镜像安全
使用镜像漏洞扫描工具持续对自由仓库中的镜像进行持续评估,对存在风险的镜像进行及时更新。
配置核查
核查包括暴露面、宿主机加固、资产管理等,来提升攻击者利用漏洞的难度。
问题8:安全配置和密钥凭证管理问题
安全配置不规范、密钥凭证不理想也是云原生的一大风险点。云原生应用会存在大量与中间件、后端服务的交互,为了简便,很多开发者将访问凭证、密钥文件直接存放在代码中,或者将一些线上资源的访问凭证设置为弱口令,导致攻击者很容易获得访问敏感数据的权限。
#云原生安全未来展望#
从日益新增的新型攻击威胁来看,云原生的安全将成为今后网络安全防护的关键。伴随着ATT&CK的不断积累和相关技术的日益完善,ATT&CK也已增加了容器矩阵的内容。ATT&CK是对抗战术、技术和常识(Adversarial Tactics, Techniques, and Common Knowledge)的缩写,是一个攻击行为知识库和威胁建模模型,它包含众多威胁组织及其使用的工具和攻击技术。这一开源的对抗战术和技术的知识库已经对安全行业产生了广泛而深刻的影响。
云原生安全的备受关注,使ATTACK Matrix for Container on Cloud的出现恰合时宜。ATT&CK让我们从行为的视角来看待攻击者和防御措施,让相对抽象的容器攻击技术和工具变得有迹可循。结合ATT&CK框架进行模拟红蓝对抗,评估企业目前的安全能力,对提升企业安全防护能力是很好的参考。
低压配电系统TN、TT、IT的比较
根据现行的国家标准《低压配电设计规范》(GB50054)的定义,将低压配电系统分为三种,即TN、TT、IT三种形式。其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地)。第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。
TN系统:电源变压器中性点接地,设备外露部分与中性线相连。
TT系统:电源变压器中性点接地,电气设备外壳采用保护接地。
IT系统:电源变压器中性点不接地(或通过高阻抗接地),而电气设备外壳电气设备外壳采用保护接地。
1、 TN系统
电力系统的电源变压器的中性点接地,根据电气设备外露导电部分与系统连接的不同方式又可分三类:即TN—C系统、TN—S系统、TN—C—S系统。下面分别进行介绍。
11、TN—C系统
其特点是:电源变压器中性点接地,保护零线(PE)与工作零线(N)共用。
(1)它是利用中性点接地系统的中性线(零线)作为故障电流的回流导线,当电气设备相线碰壳,故障电流经零线回到中点,由于短路电流大,因此可采用过电流保护器切断电源。TN—C系统一般采用零序电流保护;
(2)TN—C系统适用于三相负荷基本平衡场合,如果三相负荷不平衡,则PEN线中有不平衡电流,再加一些负荷设备引起的谐波电流也会注入PEN,从而中性线N带电,且极有可能高于50V,它不但使设备机壳带电,对人身造成不安全,而且还无法取得稳定的基准电位;
(3)TN—C系统应将PEN线重复接地,其作用是当接零的设备发生相与外壳接触时,可以有效地降低零线对地电压。
由上可知,TN-C系统存在以下缺陷:
(1)当三相负载不平衡时,在零线上出现不平衡电流,零线对地呈现电压。当三相负载严重不平衡时,触及零线可能导致触电事故。
(2)通过漏电保护开关的零线,只能作为工作零线,不能作为电气设备的保护零线,这是由于漏电开关的工作原理所决定的。
(3)对接有二极漏电保护开关的单相用电设备,如用于TN-C系统中其金属外壳的保护零线,严禁与该电路的工作零线相连接,也不允许接在漏电保护开关前面的PEN线上,但在使用中极易发生误接。
(4)重复接地装置的连接线,严禁与通过漏电开关的工作零线相连接。
TN-S供电系统,将工作零线与保护零线完全分开,从而克服了TN-C供电系统的缺陷,所以现在施工现场已经不再使用TN-C系统。
12、 TN—S系统
整个系统的中性线(N)与保护线(PE)是分开的。
(1)当电气设备相线碰壳,直接短路,可采用过电流保护器切断电源;
(2)当N线断开,如三相负荷不平衡,中性点电位升高,但外壳无电位,PE线也无电位;
(3)TN—S系统PE线首末端应做重复接地,以减少PE线断线造成的危险。
(4)TN—S系统适用于工业企业、大型民用建筑。
目前单独使用独一变压器供电的或变配电所距施工现场较近的工地基本上都采用了TN—S系统,与逐级漏电保护相配合,确实起到了保障施工用电安全的作用,但TN—S系统必须注意几个问题:
(1)保护零线绝对不允许断开。否则在接零设备发生带电部分碰壳或是漏电时,就构不成单相回路,电源就不会自动切断,就会产生两个后果:一是使接零设备失去安全保护;二是使后面的其他完好的接零设备外壳带电,引起大范围的电气设备外壳带电,造成可怕的触电威胁。因此在《JGJ46-88施工现场临时用电安全技术规范》规定专用保护线必须在首末端做重复接地。
(2)同一用电系统中的电器设备绝对不允许部分接地部分接零。否则当保护接地的设备发生漏电时,会使中性点接地线电位升高,造成所有采用保护接零的设备外壳带电。
(3)保护接零PE线的材料及连接要求:保护零线的截面应不小于工作零线的截面,并使用黄/绿双色线。与电气设备连接的保护零线应为截面不少于25mm2的绝缘多股铜线。保护零线与电气设备连接应采用铜鼻子等可靠连接,不得采用铰接;电气设备接线柱应镀锌或涂防腐油脂,保护零线在配电箱中应通过端子板连接,在其他地方不得有接头出现。
13、 TN—C—S系统
它由两个接地系统组成,第一部分是TN—C系统,第二部分是TN—S系统,其分界面在N线与PE线的连接点。
(1)当电气设备发生单相碰壳,同TN—S系统;
(2)当N线断开,故障同TN—S系统;
(3)TN—C—S系统中PEN应重复接地,而N线不宜重复接地。
PE线连接的设备外壳在正常运行时始终不会带电,所以TN—C—S系统提高了 *** 作人员及设备的安全性。施工现场一般当变台距现场较远或没有施工专用变压器时采取TN—C—S系统。
2、 TT供电系统
电源中性点直接接地,电气设备的外露导电部分用PE线接到接地极(此接地极与中性点接地没有电气联系)
在采用此系统保护时,当一个设备发生漏电故障,设备金属外壳所带的故障电压较大,而电流较小,不利于保护开关的动作,对人和设备有危害。为消除T系统的缺陷,提高用电安全保障可靠性,根据并联电阻原理,特提出完善TT系统的技术革新。技术革新内容是:用不小于工作零线截面的绿/黄双色线(简称PT线),并联总配电箱、分配电箱、主要机械设备下埋设的4-5组接地电阻的保护接地线为保护地线,用绿/黄双色线连接电气设备金属外壳。它有下列优点:1)单相接地的故障点对地电压较低,故障电流较大,使漏电保护器迅速动作切断电源,有利于防止触电事故发生。2)PT线不与中性线相联接,线路架设分明、直观,不会有接错线的事故隐患;几个施工单位同时施工的大工地可以分片、分单位设置PT线,有利于安全用电管理和节约导线用量。3)不用每台电气设备下埋设重复接地线,可以节约埋设接地线费用开支,也有利于提高接地线质量并保证接地电阻≤10Ω,用电安全保护更可靠。
TT系统在国外被广泛应用,在国内仅限于局部对接地要求高的电子设备场合,目前在施工现场一般不采用此系统。但如果是公用变压器,而有其它使用者使用的是TT系统,则施工现场也应采用此系统。
3、 IT系统
电力系统的带电部分与大地间无直接连接(或经电阻接地),而受电设备的外露导电部分则通过保护线直接接地。
这种系统主要用于10KV及35KV的高压系统和矿山、井下的某些低压供电系统,不适合在施工现场应用,故在此不再分析。
建设部新颁发的《建筑施工安全检查标准》(JGJ59-99)规定:施工现场专用的中性点直接接地的电力系统中必须采用TN-S接零保护系统。因此,TN-S接零保护系统在施工现场中得到了广泛的应用,但如果PE线发生断裂或与电气设备未做好电气连接,重复接地阻值达不到安全的要求,也同样会发生触电事故,为了提高TN-S接零保护系统的安全性,在此提出等电位联接概念。所谓等电位联结,是将电气设备外露可导电部分与系统外可导电部分(如混凝土中的主筋、各种金属管道等)通过保护零线(PE线)作实质上的电气连接,使二者的电位趋于相等。应注意差异,即等电位联结线正常时无电流通过,只传递电位,故障时才有电流通过。等电位联结的作用。(1)总等电位联结能降低预期接触电压;(2)总等电位联结能消除装置外沿PE线传导故障电压带来的电击危险。因此施工现场也应逐步推广该技术。当然,无论采取何种接地形式都绝不是万无一失绝对安全的。施工现场临时用电必须严格按JGJ46-88规范要求进行系统的设置和漏电保护器的使用,严格履行施工用电设计、验收制度,规范管理,才能杜绝事故的发生。
以上就是关于IT信息系统软件存在哪些安全问题全部的内容,包括:IT信息系统软件存在哪些安全问题、IT的含义是什么、IT网络安全人员应该怎么保证系统安全等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)