人工智能用来提高健康医疗服务的效率和自动化程度。人工智能技术的发展在过去备受质疑,然后如今我们发现大数据技术正在推进人工智能的进程,在医疗健康领域也是如此。
分析患者行为,制定个性化肿瘤治疗方案
例如,两位乳腺癌患者可能会得到相同的治疗方案,但其实两者的身体情况可能完全不同。
其中一个可能是马拉松长跑者,另外一个是喜欢安静的读书的人;一个可能是吸烟者,另一个也许是个注重养生的人;一个可能都60多岁了,另一个也就刚刚40。这样的情况在我们身边是常见的。
所以考虑到方方面面的不同,这两位患者需要两种不同的治疗方案。
而对于科学家和医生来说,难度在于掌握特定患者的个人信息。重要的关键信息常常淹没于大量的数据当中,医生根本没有时间(可能要一年)在茫茫信息中筛选出他们想要的。
于是许多研究者想方设法利用人工智能的方式来跨越这个难度。
比如,卡耐基梅隆大学和匹兹堡大学的科学家,正在用人工智能从电子病历、诊断影像、处方、基因组资料、保险记录,甚至是可穿戴设备的数据中挑选出有用信息,为特殊疾病和特殊人群设立医疗保健方案。
研究者们利用大数据来创建特定的医疗方案、控制传染病,并寻找致命性疾病的治疗方法。
“现在遇到的最大问题就是,系统并不智能。” 卡耐基梅隆大学机器学习系的教授Eric Xing说道。“存储在系统中的数据基本上是死数据,而机器学习和人工智能可以把有用的信息从海量数据中分离出来。你可以这样理解,就像是有一个人工的大脑在代替一个‘死’的存储系统在工作。”
他表示,卡耐基梅隆大学和匹兹堡大学正在与匹兹堡大学医学中心合作一个“匹兹堡健康数据联盟”的项目。医疗中心在接下来的6年中,会每年资助研究者1000~2000万美元用于这项研究。
科学家正在用从医疗中心获得的健康数据(剔除了患者身份信息),来研究如何能够更快速有效的分析大数据,去创造一个与健康医疗相关的技术和服务,能针对不同患者更好的做诊断、治疗和沟通。
“每个患者都是不同的个体。”Xing补充道,“一个非常简单的观点,比如说乳腺癌应该用药物A或者B来治疗。但是由于生活方式、生活环境和其他相关健康因素的独特性,使得每个人都是一个不同的独立个体。而人工智能不单单是从一位医生那里提取信息,而是来自大量有经验的医生,这样,它就能从不同患者那里梳理出有共性的信息。”
此外,人工智能软件工作效率远远高于人脑,能够更快速的找到数据的模式和相似性,帮助医生和科学家发现最关键的信息。
举例来说,一名50岁的糖尿病患者,生活方式很积极,某一种治疗方法可能对他很有效果。那么医生就可以用同一种治疗方法,来医治其他患有相同特性的糖尿病患者。
Xing表示,他们的团队就正在研究一款App,可以为用户提供一些健康生活建议,规避一些疾病。此款App可能会在一年内上线。
Philip Lehman,卡耐基梅隆大学计算机科学副院长告诉笔者,这款App应用了人工智能,可以告诉人们什么时候该去看医生,咨询什么样的医生以及怎样保持身体健康。
“比如,现在大家一般会通过手机来搜索,‘我怎么到某个地方’。” Lehman在采访中表示。“其实,你把它搬到医疗上是一样的。‘我怎么做才能感觉好点或者活的久一点’?”
Lehman和Xing希望,从App到机器学习工具和服务,他们都能延展出不同产品的原型,在未来的5-6年内,开发出十几个新产品。
这方面比较出名的公司,是获得IBM投资的Welltok,它借助IBM的“沃森”超级电脑,来构建通过个性化活动与用户沟通的愿景。其App Cafewell Concierge 利用沃森系统的自然语言处理能力,来更好的了解用户的需求,平衡对用户的激励和警告,以此达到预期目标来回馈用户。
虚拟医疗助手,改善药物依从性
比如,Aicure,利用移动技术和面部识别技术来判断患者是否按时服药,再通过App来获取患者数据,用自动算法来识别药物和药物摄取。患者数据会通过与HIPAA(健康保险流通与责任法案)兼容网络实时的反馈给临床医生,这样医生就可以确认他的患者是否在按照他们的嘱咐按时服药。当然,这项技术也可以被用来标识不良事件。
还有一个是,Next IT开发的一款app Alme Health Coach,去深掘人们为什么不按时服药。对于健康服务业来说,Next IT虽然还是个新手。但是它曾经开发了一款app“虚拟助手”来帮助消费者解决在银行、零售、财产管理等方面遇到的问题。
一般,一些人工智能的组件会重复用户话语来明确用户想法。而Alme Health Coach是专为特定疾病、药物和治疗设计配置。它可以与用户的闹钟同步,来触发例如‘睡得怎么样’的问题,还可以提示用户按时服药。这种思路是收集医生可用的可行动化数据,来更好的与病人对接(前提是患者愿意共享他们的数据)。
跟踪状态,自动汇报支持智能看护
人工智能技术公司Automated Insights把它的自然语言生成平台Wordsmith与Great Call(移动App开发者)合作。家人和朋友可以通过与App连接的GreatCall设备,来获取设备携带者的信息。它主要用于老年人看护,当携带者需要帮助的时候,App可以收到消息提醒。此外,该App还有GPS定位专利技术,可以获取用户的位置信息。
目前,该公司已经被Vista Equity Partners 和STATS(体育信息技术公司)收购。利用Wordsmith的自动书写功能,将对看护者的情况,包括所在地点、活动路线、电池状态、设备使用情况等信息自动生成文字报告给看护人。
智能化药物研发
生物科技公司也正在把人工智能和大数据结合到一起,来识别新的药物化合物,比如Cloud 制药和 Berg。
Berg通过开发的Interrogative Biology人工智能平台,来研究人体健康组织,探究人体分子和细胞自身防御组织,以及发病原理机制,利用人工智能和大数据来推算人体自身分子潜在的药物化合物。
这种方法有很多优点,不但使得靶向治疗成为今天医学治疗的趋势,而且利用人体自身的分子来医治类似于糖尿病和癌症等疑难杂症,要比研究新药的时间成本与资金少一半。
当然,Berg不是这个领域的唯一公司。Cloud制药就在专注于这个领域的研发,并已融资2000万美元。
还有,强生和赛诺菲,也正在用“沃森”超级系统(一个可迅速在海量数据中识别相关模式的计算机系统)来支持药物研发。
强生用“沃森”来快速分析详细的临床试验结果的科技论文,加快对不同治疗方法的对比效果研究,以求获得药物在更广泛领域的应用,而这些用普通的方法,需要3个人花费10个月的时间来完成这些工作。
“沃森”现在能识别化学、生物学、法律和知识产权语言,让科学家拥有别人无法拥有的与数据“交流”的能力,这将加快实现科学和医疗研究领域的突破。
合智互联是国内互联网时代较有影响力的IT领域整合服务提供商。
北京合智互联信息技术有限公司是IT解决方案与服务供应商。(以下简称合智互联)合智互联公司以软件技术为核心,通过软件与服务的结合,软件与制造的结合,技术与行业管理能力的结合,提供行业解决方案和产品工程解决方案以及相关软件产品、平台及服务。面向行业客户,我们提供安全、可靠、高质量、易扩展的行业解决方案,帮助客户实现信息化管理最佳实践,以满足客户业务快速发展的不同需求。行业解决方案涵盖的领域包括:电信、能源、金融、政府(社会保障、财政、税务、公共安全、国土资源、海洋、质量监督检验检疫、工商、知识产权等)、制造业、商贸流通业、医疗卫生、教育、交通等行业。
大数据在医疗行业的应用可在以下几个方面发挥积极作用:
(1)服务居民。居民健康指导服务系统,提供精准医疗、个性化健康保健指导,使居民能在医院、社区及线上的服务保持连续性。例如,提供心血管、癌症、高血压、糖尿病等慢性病干预、管理、健康预警及健康宣教(保健方案订阅、推送);同时减少患者住院时间,减少急诊量,提高家庭护理比例和门诊医生预约量。
(2)服务医生。临床决策支持,如用药分析、药品不良反应、疾病并发症、治疗效果相关性分析、抗生素应用分析;或是制定个性化治疗方案。
(3)服务科研。包括疾病诊断与预测、提高临床试验设计的统计工具和算法、临床实验数据的分析与处理等方面,如针对重大疾病识别疾病易感基因、极端表现人群;提供最佳治疗途径。
互联网是个神奇的大网,医疗大数据和软件定制也是一种模式,这里报价,这个手技的开始数字是一把柒中间的是叁儿零最后的是一泗贰五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
(4)服务管理机构。规范性用药评价、管理绩效分析;流行病、急病等预防干预及措施评价;公众健康监测,付款(或定价)、临床路径的优化等。
(5)公众健康服务。包括危及健康因素的监控与预警、网络平台、社区服务等方面。
除了较早前就开始利用大数据的互联网公司,医疗行业可能是让大数据分析最先发扬光大的传统行业之一。医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。因此,医疗行业将和银行、电信、保险等行业一起首先迈入大数据时代。下面列出了医疗服务业5大领域(临床业务、付款/定价、研发、新的商业模式、公众健康)的15项应用,这些场景下,大数据的分析和应用都将发挥巨大的作用,提高医疗效率和医疗效果。
临床 *** 作
在临床 *** 作方面,有5个主要场景的大数据应用。麦肯锡估计,如果这些应用被充分采用,光是美国,国家医疗健康开支一年就将减少165亿美元。
1、比较效果研究
通过全面分析病人特征数据和疗效数据,然后比较多种干预措施的有效性,可以找到针对特定病人的最佳治疗途径。
基于疗效的研究包括比较效果研究。研究表明,对同一病人来说,医疗 服务提供方不同,医疗护理方法和效果不同,成本上也存在着很大的差异。精准分析包括病人体征数据、费用数据和疗效数据在内的大型数据集,可以帮助医生确定 临床上最有效和最具有成本效益的治疗方法。医疗护理系统实现CER,将有可能减少过度治疗(比如避免那些副作用比疗效明显的治疗方式),以及治疗不足。从 长远来看,不管是过度治疗还是治疗不足都将给病人身体带来负面影响,以及产生更高的医疗费用。
世界各地的很多医疗机构(如英国的NICE,德国IQWIG,加拿大普通药品检查机构等)已经开始了CER项目并取得了初步成功。2009年,美国 通过的复苏与再投资法案,就是向这个方向迈出的第一步。在这一法案下,设立的比较效果研究联邦协调委员会协调整个联邦政府的比较效果的研究,并对4亿美元 投入资金进行分配。这一投入想要获得成功,还有大量潜在问题需要解决,比如,临床数据和保险数据的一致性问题,当前在缺少EHR(电子健康档案)标准和互 *** 作性的前提下,大范围仓促部署EHR可能造成不同数据集难以整合。再如,病人隐私问题,想要在保护病人隐私的前提下,又要提供足够详细的数据以便保证分 析结果的有效性不是一件容易的事情。还有一些体制问题,比如目前美国法律禁止医疗保险机构和医疗补助服务中心 (医疗服务支付方)使用成本/效益比例来制定报销决策,因此即便他们通 过大数据分析找到更好的方法也很难落实。
2、临床决策支持系统
临床决策支持系统可以提高工作效率和诊疗质量。目前的临床决策支持系统分析医生输入的条目,比较其与医学指引不同的地方,从而提醒医生防止潜在的错 误,如药物不良反应。通过部署这些系统,医疗服务提供方可以降低医疗事故率和索赔数,尤其是那些临床错误引起的医疗事故。在美国Metropolitan 儿科重症病房的研究中,两个月内,临床决策支持系统就削减了40%的药品不良反应事件数量。
大数据分析技术将使临床决策支持系统更智能,这得益于对非结构化数据的分析能力的日益加强。比如可以使用图像分析和识别技术,识别医疗影像(X光、 CT、MRI)数据,或者挖掘医疗文献数据建立医疗专家数据库(就像IBMWatson做的),从而给医生提出诊疗建议。此外,临床决策支持系统还可以使 医疗流程中大部分的工作流流向护理人员和助理医生,使医生从耗时过长的简单咨询工作中解脱出来,从而提高治疗效率。
3、医疗数据透明度
提高医疗过程数据的透明度,可以使医疗从业者、医疗机构的绩效更透明,间接促进医疗服务质量的提高。
根据医疗服务提供方设置的 *** 作和绩效数据集,可以进行数据分析并创建可视化的流程图和仪表盘,促进信息透明。流程图的目标是识别和分析临床变异和医 疗废物的来源,然后优化流程。仅仅发布成本、质量和绩效数据,即使没有与之相应的物质上的奖励,也往往可以促进绩效的提高,使医疗服务机构提供更好的服 务,从而更有竞争力。
数据分析可以带来业务流程的精简,通过精益生产降低成本,找到符合需求的工作更高效的员工,从而提高护理质量并给病人带来更好的体验,也给医疗服务 机构带来额外的业绩增长潜力。美国医疗保险和医疗补助服务中心正在测试仪表盘,将其作为建设主动、透明、开放、协作型政府的一部分。本着同样的精神,美国 疾病控制和预防中心 。
公开发布医疗质量和绩效数据还可以帮助病人做出更明智的健康护理决定,这也将帮助医疗服务提供方提高总体绩效,从而更具竞争力。
4、远程病人监控
从对慢性病人的远程监控系统收集数据,并将分析结果反馈给监控设备(查看病人是否正在遵从医嘱),从而确定今后的用药和治疗方案。
2010年,美国有15亿慢性病患者,如糖尿病、充血性心脏衰竭、高血压患者,他们的医疗费用占到了医疗卫生系统医疗成本的80%。远程病人监护 系统对治疗慢性病患者是非常有用的。远程病人监护系统包括家用心脏监测设备、血糖仪,甚至还包括芯片药片,芯片药片被患者摄入后,实时传送数据到电子病历 数据库。举个例子,远程监控可以提醒医生对充血性心脏衰竭病人采取及时治疗措施,防止紧急状况发生,因为充血性心脏衰竭的标志之一是由于保水产生的体重增 加现象,这可以通过远程监控实现预防。更多的好处是,通过对远程监控系统产生的数据的分析,可以减少病人住院时间,减少急诊量,实现提高家庭护理比例和门 诊医生预约量的目标。
5、对病人档案的先进分析
在病人档案方面应用高级分析可以确定哪些人是某类疾病的易感人群。举例说,应用高级分析可以帮助识别哪些病人有患糖尿病的高风险,使他们尽早接受预防性保健方案。这些方法也可以帮患者从已经存在的疾病管理方案中找到最好的治疗方案。
付款/定价
对医疗支付方来说,通过大数据分析可以更好地对医疗服务进行定价。以美国为例,这将有潜力创造每年500亿美元的价值,其中一半来源于国家医疗开支的降低。
1、自动化系统
自动化系统(例如机器学习技术)检测欺诈行为。业内人士评估,每年有2%~4%的医疗索赔是欺诈性的或不合理的,因此检测索赔欺诈具有巨大的经济意 义。通过一个全面的一致的索赔数据库和相应的算法,可以检测索赔准确性,查出欺诈行为。这种欺诈检测可以是追溯性的,也可以是实时的。在实时检测中,自动 化系统可以在支付发生前就识别出欺诈,避免重大的损失。
2、基于卫生经济学和疗效研究的定价计划
在药品定价方面,制药公司可以参与分担治疗风险,比如基于治疗效果制定定价策略。这对医疗支付方的好处显而易见,有利于控制医疗保健成本支出。对患 者来说,好处更加直接。他们能够以合理的价格获得创新的药物,并且这些药物经过基于疗效的研究。而对医药产品公司来说,更好的定价策略也是好处多多。他们 可以获得更高的市场准入可能性,也可以通过创新的定价方案,更有针对性疗效药品的推出,获得更高的收入。
在欧洲,现在有一些基于卫生经济学和疗效的药品定价试点项目。
一些医疗支付方正在利用数据分析衡量医疗服务提供方的服务,并依据服务水平进行定价。医疗服务支付方可以基于医疗效果进行支付,他们可以与医疗服务提供方进行谈判,看医疗服务提供方提供的服务是否达到特定的基准。
研发
医疗产品公司可以利用大数据提高研发效率。拿美国为例,这将创造每年超过1000亿美元的价值。
1、预测建模
医药公司在新药物的研发阶段,可以通过数据建模和分析,确定最有效率的投入产出比,从而配备最佳资源组合。模型基于药物临床试验阶段之前的数据集及 早期临床阶段的数据集,尽可能及时地预测临床结果。评价因素包括产品的安全性、有效性、潜在的副作用和整体的试验结果。通过预测建模可以降低医药产品公司 的研发成本,在通过数据建模和分析预测药物临床结果后,可以暂缓研究次优的药物,或者停止在次优药物上的昂贵的临床试验。
除了研发成本,医药公司还可以更快地得到回报。通过数据建模和分析,医药公司可以将药物更快推向市场,生产更有针对性的药物,有更高潜在市场回报和 治疗成功率的药物。原来一般新药从研发到推向市场的时间大约为13年,使用预测模型可以帮助医药企业提早3~5年将新药推向市场。
2、提高临床试验设计的统计工具和算法
使用统计工具和算法,可以提高临床试验设计水平,并在临床试验阶段更容易地招募到患者。通过挖掘病人数据,评估招募患者是否符合试验条件,从而加快 临床试验进程,提出更有效的临床试验设计建议,并能找出最合适的临床试验基地。比如那些拥有大量潜在符合条件的临床试验患者的试验基地可能是更理想的,或 者在试验患者群体的规模和特征二者之间找到平衡。
3、临床实验数据的分析
分析临床试验数据和病人记录可以确定药品更多的适应症和发现副作用。在对临床试验数据和病人记录进行分析后,可以对药物进行重新定位,或者实现针对 其他适应症的营销。实时或者近乎实时地收集不良反应报告可以促进药物警戒(药物警戒是上市药品的安全保障体系,对药物不良反应进行监测、评价和预防)。或 者在一些情况下,临床实验暗示出了一些情况但没有足够的统计数据去证明,现在基于临床试验大数据的分析可以给出证据。
这些分析项目是非常重要的。可以看到最近几年药品撤市数量屡创新高,药品撤市可能给医药公司带来毁灭性的打击。2004年从市场上撤下的止痛药Vioxx,给默克公司造成70亿美元的损失,短短几天内就造成股东价值33%的损失。
4、个性化治疗
另一种在研发领域有前途的大数据创新,是通过对大型数据集(例如基因组数据)的分析发展个性化治疗。这一应用考察遗传变异、对特定疾病的易感性和对特殊药物的反应的关系,然后在药物研发和用药过程中考虑个人的遗传变异因素。
个性化医学可以改善医疗保健效果,比如在患者发生疾病症状前,就提供早期的检测和诊断。很多情况下,病人用同样的诊疗方案但是疗效却不一样,部分原因是遗传变异。针对不同的患者采取不同的诊疗方案,或者根据患者的实际情况调整药物剂量,可以减少副作用。
个性化医疗目前还处在初期阶段。麦肯锡估计,在某些案例中,通过减少处方药量可以减少30%~70%的医疗成本。比如,早期发现和治疗可以显著降低肺癌给卫生系统造成的负担,因为早期的手术费用是后期治疗费用的一半。
5、疾病模式的分析
通过分析疾病的模式和趋势,可以帮助医疗产品企业制定战略性的研发投资决策,帮助其优化研发重点,优化配备资源。
新的商业模式
大数据分析可以给医疗服务行业带来新的商业模式。
汇总患者的临床记录和医疗保险数据集
汇总患者的临床记录和医疗保险数据集,并进行高级分析,将提高医疗支付方、医疗服务提供方和医药企业的决策能力。比如,对医药企业来说,他们不仅可 以生产出具有更佳疗效的药品,而且能保证药品适销对路。临床记录和医疗保险数据集的市场刚刚开始发展,扩张的速度将取决于医疗保健行业完成EMR和循证医 学发展的速度。
公众健康
大数据的使用可以改善公众健康监控。公共卫生部门可以通过覆盖全国的患者电子病历数据库,快速检测传染病,进行全面的疫情监测,并通过集成疾病监测 和响应程序,快速进行响应。这将带来很多好处,包括医疗索赔支出减少、传染病感染率降低,卫生部门可以更快地检测出新的传染病和疫情。通过提供准确和及时 的公众健康咨询,将会大幅提高公众健康风险意识,同时也将降低传染病感染风险。所有的这些都将帮助人们创造更好的生活。
极其流行,同样也是竞争力极其大的一种商业模式。虽然国内软件开发公司都发展壮大起来了,但是各地软件开发公司的实力及资质仍然参差不齐。下面为大家介绍下近期国内软件开发公司的排名汇总。
1:华盛恒辉科技有限公司
上榜理由:华盛恒辉是一家专注于高端软件定制开发服务和高端建设的服务机构,致力于为企业提供全面、系统的开发制作方案。在开发、建设到运营推广领域拥有丰富经验,我们通过建立对目标客户和用户行为的分析,整合高质量设计和极其新技术,为您打造创意十足、有价值的企业品牌。
在军工领域,合作客户包括:中央军委联合参谋(原总参)、中央军委后勤保障部(原总后)、中央军委装备发展部(原总装)、装备研究所、战略支援、军事科学院、研究所、航天科工集团、中国航天科技集团、中国船舶工业集团、中国船舶重工集团、第一研究所、训练器材所、装备技术研究所等单位。
在民用领域,公司大力拓展民用市场,目前合作的客户包括中国中铁电气化局集团、中国铁道科学研究院、济南机务段、东莞轨道交通公司、京港地铁、中国国电集团、电力科学研究院、水利部、国家发改委、中信银行、华为公司等大型客户。
2:五木恒润科技有限公司
上榜理由:五木恒润拥有员工300多人,技术人员占90%以上,是一家专业的军工信息化建设服务单位,为军工单位提供完整的信息化解决方案。公司设有股东会、董事会、监事会、工会等上层机构,同时设置总经理职位,由总经理管理公司的具体事务。公司下设有研发部、质量部、市场部、财务部、人事部等机构。公司下辖成都研发中心、西安研发中心、沈阳办事处、天津办事处等分支机构。
3、浪潮
浪潮集团有限公司是国家首批认定的规划布局内的重点软件企业,中国著名的企业管理软件、分行业ERP及服务供应商,在咨询服务、IT规划、软件及解决方案等方面具有强大的优势,形成了以浪潮ERP系列产品PS、GS、GSP三大主要产品。是目前中国高端企业管理软件领跑者、中国企业管理软件技术领先者、中国最大的行业ERP与集团管理软件供应商、国内服务满意度最高的管理软件企业。
4、德格Dagle
德格智能SaaS软件管理系统自德国工业40,并且结合国内工厂行业现状而打造的一款工厂智能化信息平台管理软件,具备工厂ERP管理、SCRM客户关系管理、BPM业务流程管理、
OMS订单管理等四大企业业务信息系统,不仅满足企业对生产进行简易管理的需求,并突破局域网应用的局限性,同时使数据管理延伸到互联网与移动商务,不论是内部的管理应用还是外部的移动应用,都可以在智能SaaS软件管理系统中进行业务流程的管控。
5、Manage
高亚的产品 (8Manage) 是美国经验中国研发的企业管理软件,整个系统架构基于移动互联网和一体化管理设计而成,其源代码编写采用的是最为广泛应用的
Java / J2EE 开发语言,这样的技术优势使 8Manage
可灵活地按需进行客制化,并且非常适用于移动互联网的业务直通式处理,让用户可以随时随地通过手机apps进行实时沟通与交易。
以上就是关于人工智能在医疗领域能干啥全部的内容,包括:人工智能在医疗领域能干啥、合智互联是干什么的、国内医疗大数据公司有哪些最好结合案例等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)