二叉树(Binary tree):是树形结构的一个重要类型。许多实际问题抽象出来的数据结构往往是二叉树形式,即使是一般的树也能简单地转换为二叉树,而且二叉树的存储结构及其算法都较为简单,因此二叉树显得特别重要。二叉树特点是每个节点最多只能有两棵子树,且有左右之分。
二叉树图 先序遍历先序:是二叉树遍历中的一种,即先访问根结点,然后遍历左子树,后遍历右子树。遍历左、右子树时,先访问根结点,后遍历左子树,后遍历右子树,如果二叉树为空则返回。
package main
import "fmt"
type node struct {
value string
leftNode *node
rightNode *node
}
func main() {
n := node{}
node := n.newTree()
n.Show(node)
}
// 前序遍历 根左右
func (n *node) Show(node *node) {
if node != nil {
fmt.Print(node.value)
n.Show(node.leftNode)
n.Show(node.rightNode)
}
}
// 构造二叉树 返回根节点
func (n *node) newTree() *node {
nodeA := &node{
value: "A",
}
nodeB := &node{
value: "B",
}
nodeC := &node{
value: "C",
}
nodeD := &node{
value: "D",
}
nodeE := &node{
value: "E",
}
nodeF := &node{
value: "F",
}
nodeG := &node{
value: "G",
}
nodeH := &node{
value: "H",
}
nodeI := &node{
value: "I",
}
nodeJ := &node{
value: "J",
}
nodeK := &node{
value: "K",
}
nodeA.leftNode = nodeB
nodeA.rightNode = nodeC
nodeB.leftNode = nodeD
nodeB.rightNode = nodeE
nodeC.leftNode = nodeF
nodeC.rightNode = nodeG
nodeD.rightNode = nodeH
nodeE.rightNode = nodeI
nodeF.leftNode = nodeJ
nodeF.rightNode = nodeK
fmt.Print("先序:")
return nodeA
}
中序遍历
中序:是二叉树遍历中的一种,即先遍历左子树,后访问根结点,然后遍历右子树。若二叉树为空则结束返回。
package main
import "fmt"
type node struct {
value string
leftNode *node
rightNode *node
}
func main() {
n := node{}
node := n.newTree()
n.Show(node)
}
// 中序遍历 左根右
func (n *node) Show(node *node) {
if node != nil {
n.Show(node.leftNode)
fmt.Print(node.value)
n.Show(node.rightNode)
}
}
// 构造二叉树 返回根节点
func (n *node) newTree() *node {
nodeA := &node{
value: "A",
}
nodeB := &node{
value: "B",
}
nodeC := &node{
value: "C",
}
nodeD := &node{
value: "D",
}
nodeE := &node{
value: "E",
}
nodeF := &node{
value: "F",
}
nodeG := &node{
value: "G",
}
nodeH := &node{
value: "H",
}
nodeI := &node{
value: "I",
}
nodeJ := &node{
value: "J",
}
nodeK := &node{
value: "K",
}
nodeA.leftNode = nodeB
nodeA.rightNode = nodeC
nodeB.leftNode = nodeD
nodeB.rightNode = nodeE
nodeC.leftNode = nodeF
nodeC.rightNode = nodeG
nodeD.rightNode = nodeH
nodeE.rightNode = nodeI
nodeF.leftNode = nodeJ
nodeF.rightNode = nodeK
fmt.Print("中序:")
return nodeA
}
后序遍历
后序:是二叉树遍历中的一种,即先遍历左子树,后遍历右子树,然后访问根结点,遍历左、右子树时,仍先遍历左子树,后遍历右子树,最后遍历根结点。
package main
import "fmt"
type node struct {
value string
leftNode *node
rightNode *node
}
func main() {
n := node{}
node := n.newTree()
n.Show(node)
}
// 后序遍历 左右根
func (n *node) Show(node *node) {
if node != nil {
n.Show(node.leftNode)
n.Show(node.rightNode)
fmt.Print(node.value)
}
}
// 构造二叉树 返回根节点
func (n *node) newTree() *node {
nodeA := &node{
value: "A",
}
nodeB := &node{
value: "B",
}
nodeC := &node{
value: "C",
}
nodeD := &node{
value: "D",
}
nodeE := &node{
value: "E",
}
nodeF := &node{
value: "F",
}
nodeG := &node{
value: "G",
}
nodeH := &node{
value: "H",
}
nodeI := &node{
value: "I",
}
nodeJ := &node{
value: "J",
}
nodeK := &node{
value: "K",
}
nodeA.leftNode = nodeB
nodeA.rightNode = nodeC
nodeB.leftNode = nodeD
nodeB.rightNode = nodeE
nodeC.leftNode = nodeF
nodeC.rightNode = nodeG
nodeD.rightNode = nodeH
nodeE.rightNode = nodeI
nodeF.leftNode = nodeJ
nodeF.rightNode = nodeK
fmt.Print("后序:")
return nodeA
}
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)