Python做大数据,都需要学习什么,比如哪些框架,库等!人工智能呢?请尽量详细点!

Python做大数据,都需要学习什么,比如哪些框架,库等!人工智能呢?请尽量详细点!,第1张

阶段一、人工智能篇之Python核心

1、Python扫盲

2、面向对象编程基础

3、变量和基本数据类型

4、Python机器学习类库

5、Python控制语句与函数

6.、Python数据库 *** 作+正则表达式

7、Lambda表达式、装饰器和Python模块化开发

阶段二、人工智能篇之数据库交互技术

1、初识MySQL数据库

2、创建MySQL数据库和表

3、MySQL数据库数据管理

4、使用事务保证数据完整性

5、使用DQL命令查询数据

6、创建和使用索引

7、MySQL数据库备份和恢复

阶段三、人工智能篇之前端特效

1、HTML+CSS

2、Java

3、jQuery

阶段四、人工智能篇之Python高级应用

1、Python开发

2、数据库应用程序开发

3、Python Web设计

4、存储模型设计

5、智联招聘爬虫

6、附加:基础python爬虫库

阶段五、人工智能篇之人工智能机器学习篇

1、数学基础

2、高等数学必知必会

3、Numpy前导介绍

4、Pandas前导课程

5、机器学习

阶段六、人工智能篇之人工智能项目实战

1、人脸性别和年龄识别原理

2、CTR广告点击量预测

3、DQN+遗传算法

4、图像检索系统

5、NLP阅读理解

阶段七、人工智能篇之人工智能项目实战篇

1、基于Python数据分析与机器学习案例实战教程

2、基于人工智能与深度学习的项目实战

3、分布式搜索引擎ElasticSearch开发

4、AI法律咨询大数据分析与服务智能推荐项目

5、电商大数据情感分析与AI推断实战项目

6、AI大数据互联网电影智能推荐

由于Python的易用性和可扩展性,众多深度学习框架提供了Python接口,其中较为流行的深度学习库如下:

第一:Caffe

Caffe是一个以表达式、速度和模块化为核心的深度学习框架,具备清晰、可读性高和快速的特性,在视频、图像处理方面应用较多。

Caffe中的网络结构与优化都以配置文件形式定义,容易上手,无须通过代码构建网络网络训练速度快,能够训练大型数据集与State-of-the-art的模型,模块化的组件可以方便地拓展到新的模型与学习任务上。

第二:Theano

Theano诞生于2008年,是一个高性能的符号计算及深度学习库,被认为是深度学习库的始祖之一,也被认为是深度学习研究和应用的重要标准之一。其核心是一个数学表达式的编译器,专门为处理大规模神经网络训练的计算而设计。

Theano很好地整合了Numpy,可以直接使用Numpy的Ndarray,使得API接口学习成本大为降低其计算稳定性好,可以精准地计算输出值很小的函数可动态地生成C或者CUDA代码,用来编译成高效的机器代码。

第三:TensorFlow

TensorFlow是相对高阶的机器学习库,其核心代码使用C++编写,并支持自动求导,使得用户可以方便地设计神经网络结构,不需要亲自编写C++或CUDA代码,也无须通过反向传播求解梯度。由于底层使用C++语言编写,运行效率得到了保证,并简化线上部署的复杂度。

TensorFlow不只局限于神经网络,其数据流式图还支持非常自由的算法表达,也可以轻松实现深度学习以外的机器学习算法。

第四:Keras

Keras是一个高度模块化的神经网络库,使用Python实现,并可以同时运行在TensorFlow和Theano上。

Keras专精于深度学习,其提供了到目前为止最方便的API,用户仅需将高级的模块拼在一起便可设计神经网络,大大降低了编程开销与理解开销。

在学习Python之前,相信大多数人肯定自己了解过这门语言,也知道Python有很多的学习方向,比如数据采集方面(爬虫)、或者说web开发方面,也可能是最近特别火热的人工智能方向。每个方向所需要的技术都是不尽相同的,所以在我们学习完成Python的基础语言之后,一定要慎重选择自己之后的进阶方向。

一、学习Python的基础语言

就像学习其它编程语言或者是学习一门外语一样,我们应该从Python的基础语法开始学习,了解什么是Python的变量,什么是循环,什么是函数,什么是模块、类等等。总之,基础是学习以后高级开发的基石。

二、学习Python的文件 *** 作

学习完基础之后,我们肯定会要进行一些简单的练习。文件的 *** 作是我们不二的选择,因为无论是文本文件,XML格式的文件还是Office办公系类的文件,我们统称为文件 *** 作。

我们在学习文件 *** 作的时候,要学习文件的写入和读取,以及了解各种文件之间的读写不同知识点。相信在学习完成后,对于文件的 *** 作,大家一定会得心应手的。

三、学习Python的数据库编程

在我们学习完成Python的文件 *** 作处理之后,肯定会对于文件的不便性有一定的理解。所以这个时候我们就要学习Python的数据库编程了。数据库有Mysql数据库,Oracle数据库和Sqpte数据库。Sqpte数据库是Python自身拥有的,而其他的数据库则需要我们安装相应的 *** 作模块。

一般,我们学习Mysql数据库的 *** 作即可。数据库的增加数据,删除数据,以及查询数据 以及对应的SQL语句是我们学习的重点。

四、学习Python的网络编程

在我们这个时代 ,相信大多数是离不开互联网的,我们要学习网络编程。一般了解一下三个方面就可以了。

1.写出基本的TCP连接,知道编写TCP的各个步骤,例如创建socket、绑定port、端口复用等,对TCP稍微做了解,知道协议的每个字段,了解三次握手

2.了解基本的服务器并发模型,例如多进程、多线程、IO复

3.了解一些网络库例如twisted


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10019163.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-04
下一篇 2023-05-04

发表评论

登录后才能评论

评论列表(0条)

保存