select * from(select count(t1.fXM)as A1 from KJ_KJHDRYMXB t1 where t1.fDW = 'a部' )a,(select count(t2.fJSZW)AS A2 from KJ_KJHDRYMXB t2 where t2.fJSZW = '项目人员' and t2.fDW = 'a部')b,(select count(t3.fJSZW)AS A3 from KJ_KJHDRYMXB t3 where (t3.fJSZW = '服务人员'or t3.fJSZW = '管理人员') and t3.fDW = 'a部')c,(select count(t31.fXB)AS A4 from KJ_KJHDRYMXB t31 where t31.fXB = '女' and t31.fDW = 'a部')d(select count(t4.fZC)AS A5 from KJ_KJHDRYMXB t4 where (t4.fZC = '高级职称'or t4.fZC = '中级职称')and t4.fDW = 'a部')d,(select count(t5.fXM)AS A6 from KJ_KJHDRYMXB t5 where t5.fDW = 'a部')e(select count(t6.fXL)AS A7 from KJ_KJHDRYMXB t6 where t6.fXL = '博士'and t6.fDW = 'a部')f(select count(t7.fXL)AS A8 from KJ_KJHDRYMXB t7 where t7.fXL = '硕士' and t7.fDW = 'a部')g(select count(t8.fXL)AS A9 from KJ_KJHDRYMXB t8 where t8.fXL = '本科'and t8.fDW = 'a部')h
Mysql是目前互联网使用最广的关系数据库,关系数据库的本质是将问题分解为多个分类然后通过关系来查询。 一个经典的问题是用户借书,三张表,一个用户,一个书,一个借书的关系表。当需要查询某个用户借书情况或者是书被那些人借了,就用关系查询来实现。
关系数据库范式
来自英文Normal form,简称NF。要想设计—个好的关系,必须使关系满足一定的约束条件,满足这些规范的数据库是简洁的、结构明晰的,同时,不会发生插入(insert)、删除(delete)和更新(update) *** 作异常。总共有六种范式:第一范式(1NF)、第二范式(2NF)、 第三范式 (3NF)、巴斯-科德范式(BCNF)、 第四范式 (4NF)和 第五范式 (5NF,又称完美范式)。
1NF是指数据库表的每一列都是不可分割的原子数据项。2NF必须满足1NF,要求数据库表中的每行记录必须可以被唯一地区分。3NF在2NF基础上,任何非主 属性 不依赖于其它非主属性(在2NF基础上消除传递依赖)。BCNF是在3NF基础上,任何非主属性不能对主键子集依赖(在3NF基础上消除对主码子集的依赖), 满足BCNF不再会有任何由于函数依赖导致的异常,但是我们还可能会遇到由于多值依赖导致的异常。4NF的定义很简单:已经是BC范式,并且不包含多值依赖关系。5NF处理的是无损连接问题,这个范式基本没有实际意义,因为无损连接很少出现,而且难以察觉。而域键范式试图定义一个终极范式,该范式考虑所有的依赖和约束类型,但是实用价值也是最小的,只存在理论研究中。
Catalog和Schema
是数据库对象命名空间中的层次,主要用来解决命名冲突的问题。从概念上说,一个数据库系统包含多个Catalog,每个Catalog又包含多个Schema,而每个Schema又包含多个数据库对象(表、视图、字段等)。但是Mysql的数据库名就是Schema,不支持Catalog。
Mysql的数据库引擎主要有两种MyISAM和InnoDB,MyISAM支持全文检索,InnoDB支持事务。
SQL中的通配符‘%’代表任意字符出现任意次数。‘_’代表任意字符出现一次。SQL与正则表达式结合查询一般用在WHERE table_name REGEXP '^12.34'。子查询是从里到外执行。
数据库联结(join)涉及到外键,外键是指一个表的列是另一个表的主键,那么它就是外键。笛卡尔积联结(不指定联结条件时)生成的记录条目是单纯的第一个表的行乘以第二个表的列数。用得最多的是等值联结也叫内部联结。
高级联结还有自连接,是指查询中的两张表是同一张表,它通常作为外部语句用来代替从相同表中检索数据时使用的子查询。自然联结使每个列只返回一次。外部联结是指联结包含了那些在相关表中没有关联行的行。例如列出所有产品及其订购数量,包括没有人订购的产品。LEFT OUTER JOIN指选择左边表的所有行。
组合查询是指采用UNION等将两个查询结果取并集。
视图是查看存储在别处的数据的一种工具,它本身并不包含数据,因此表的数据修改了,视图返回的数据也将随之修改,因此如果使用了复杂或嵌套视图会对性能有较大的影响。视图的作用之一是隐藏复杂的SQL通常会涉及到联结查询。
存储过程类似于批处理,包含了一条或多条SQL语句。语法:
CREATE PROCEDURE name()
BEGIN
SQL
END
-------------------------
CALL name()//来调用存储过程
游标有DECLARE定义,游标与存储过程是绑定的,存储过程处理完成,游标就会消失。游标被打开后可以使用FETCH语句访问每一行。
触发器是在某个时间发生时自动执行某条SQL语句。语法:
CREATE TRIGGER name AFTER INSERT ON talbe_name FOR EACH ROW
事务处理可以维护数据库的完整性,保证批量的 *** 作要么完全执行,要么完全不执行。包括事务、回退、提交、保留点几个关键术语。ROLLBACK只能在一个事务处理内使用。他不能回退CREATE和DROP *** 作。使用COMMIT保证事务提交。复杂的事务处理需要部分提交或回退,因此我们需要使用保留点SAVEPOINT。可以使用ROLLBACK TO savepoint_name。保留点越多越好。保留点在事务执行完成后自动释放。
in子查询、exists子查询、连接,效率的探讨以下是SQL的帮助 (高级查询优化概念)
Microsoft® SQL Server™ 2000 使用内存中的排序和哈希联接技术执行排序、交集、联合、差分等 *** 作。SQL Server 利用这种类型的查询计划支持垂直表分区,有时称其为分列存储。
SQL Server 使用三种类型的联接 *** 作:
嵌套循环联接
合并联接
哈希联接
如果一个联接输入很小(比如不到 10 行),而另一个联接输入很大而且已在其联接列上创建索引,则索引嵌套循环是最快的联接 *** 作,因为它们需要最少的 I/O 和最少的比较。有关嵌套循环的更多信息,请参见了解嵌套循环联接。
如果两个联接输入并不小但已在二者联接列上排序(例如,如果它们是通过扫描已排序的索引获得的),则合并联接是最快的联接 *** 作。如果两个联接输入都很大,而且这两个输入的大小差不多,则预先排序的合并联接提供的性能与哈希联接相似。然而,如果两个输入的大小相差很大,则哈希联接 *** 作通常快得多。有关更多信息,请参见了解合并联接。
哈希联接可以有效处理很大的、未排序的非索引输入。它们对复杂查询的中间结果很有用,因为:
中间结果未经索引(除非已经显式保存到磁盘上然后创建索引),而且生成时通常不为查询计划中的下一个 *** 作进行适当的排序。
查询优化器只估计中间结果的大小。由于估计的值在复杂查询中可能有很大的误差,因此如果中间结果比预期的大得多,则处理中间结果的算法不仅必须有效而且必须适度弱化。
哈希联接使得对非规范化的使用减少。非规范化一般通过减少联接 *** 作获得更好的性能,尽管这样做有冗余之险(如不一致的更新)。哈希联接则减少使用非规范化的需要。哈希联接使垂直分区(用单独的文件或索引代表单个表中的几组列)得以成为物理数据库设计的可行选项。有关更多信息,请参见了解哈希联接。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)