数据库中的索引是什么意思

数据库中的索引是什么意思,第1张

索引是一个单独的、物理的数据库结构,它是某个表中一列或若干列值的集合和相应的指向表中物理标识这些值的数据页的逻辑指针清单。

索引提供指向存储在表的指定列中的数据值的指针,然后根据您指定的排序顺序对这些指针排序。数据库使用索引的方式与您使用书籍中的索引的方式很相似:它搜索索引以找到特定值,然后顺指针找到包含该值的行。

在数据库关系图中,您可以在选定表的“索引/键”属性页中创建、编辑或删除每个索引类型。当保存索引所附加到的表,或保存该表所在的关系图时,索引将保存在数据库中。

索引与目录的作用类似

索引是一种单独的、物理的对数据库表中一列或多列的值进行排序的一种存储结构,它是某个表中一列或若干列值的集合和相应的指向表中物理标识这些值的数据页的逻辑指针清单。索引的作用相当于图书的目录,可以根据目录中的页码快速找到所需的内容。

一个索引是存储的表中一个特定列的值数据结构(最常见的是B-Tree,还有哈希表索引和R-tree)。索引是在表的列上创建。所以,要记住的关键点是索引包含一个表中列的值,并且这些值存储在一个数据结构中。请记住记住这一点:索引是一种数据结构 

使用索引的全部意义就是通过缩小一张表中需要查询的记录(行)的数目来加快搜索的速度

假设有一张学生名单表,有一百条数据。要查询其中名字为 小明 的学生。

一般采取select from students where name ='小明';由于我们想要得到每一个名字为小明的学生信息,在查询到第一个符合条件的行后,不能停止查询,因为可能还有其他符合条件的行。所以,必须一行一行的查找直到最后一行-这就意味数据库不得不检查上千行数据才能找到所以名字为小明 的学生。这就是所谓的全表扫描。

假设我们在 name这一列上创建一个B-Tree索引。当我们用SQL查找名字是‘小明 ’的学生时,不需要再扫描全表。而是用索引查找去查找名字为‘小明 ’的学生,因为索引已经按照按字母顺序排序。索引已经排序意味着查询一个名字会快很多,因为名字首字母为‘小’的学生都是排列在一起的。另外重要的一点是,索引同时存储了表中相应行的指针以获取其他列的数据。

right © 1999-2020, CSDNNET, All Rights Reserved

程序员必备的浏览器插件

登录

越来越好ing

关注

数据库索引是什么,有什么用,怎么用 转载

2018-12-04 23:30:36

5点赞

越来越好ing

码龄2年

关注

下面是关于数据库索引的相关知识:

简单来说,数据库索引就是数据库的数据结构!进一步说则是该数据结构中存储了一张表中某一列的所有值,也就是说索引是基于数据表中的某一列创建的。总而言之:一个索引是由表中某一列上的数据组成,并且这些数据存储在某个数据结构中。

2索引的作用。举个例子,假设有一张数据表Emplyee,该表有三列:

表中有几万条记录。现在要执行下面这条查询语句,查找出所有名字叫“Jesus”的员工的详细信息

3如果没有数据库索引功能,数据库系统会逐行的遍历整张表,对于每一行都要检查其Employee_Name字段是否等于“Jesus”。因为我们要查找所有名字为“Jesus”的员工,所以当我们发现了一条名字是“Jesus”的记录后,并不能停止继续查找,因为可能有其他员工也叫“Jesus”。这就意味着,对于表中的几万条记录,数据库每一条都要检查。这就是所谓的“全表扫描”( full table scan)

4而数据库索引功能索引的最大作用就是加快查询速度,它能从根本上减少需要扫表的记录/行的数量。

5如何创建数据库索引。可以基于Employee表的两列创建索引即可:

索引是对数据库表中一列或多列的值进行排序的一种结构,使用索引可快速访问数据库表中的特定信息。如果想按特定职员的姓来查找他或她,则与在表中搜索所有的行相比,索引有助于更

什么是索引:

索引是数据库存储引擎用于快速查找到指定数据的一种数据结构。

可以用新华字典做类比:如果新华字典中对每个字的详细解释是数据库中表的记录,那么按部首或拼音等排序的目录就是索引,使用它可以让我们快速查找的某一个字详细解释的位置。

在MySQL中,存储引擎也是用了类似的方法,先在索引中找到对应的值,然后再根据匹配的索引值找到对应表中记录的位置。

面试中为什么问索引:

之所以在索引在面试中经常被问到,就是因为:索引是数据库的良好性能表现的关键,也是对查询能优化最有效的手段。索引能够轻易地把查询性能提高几个数量级。

然而,糟糕的索引也同样会影响查询性能,当表中的数据量越来越多的时候,索引对性能的影响就越大。在数据量比较少并且负责比较低的时候,糟糕的索引对性能的影响可能不明显,但是当数据量逐渐增多的时候,性能会急剧下降。

索引的类型:

不同类型的索引,可以为不同场景提供更好的性能。在MySQL中,索引是在存储引擎层面实现的,而不是在服务器层面实现的。正如大家所知道,MySQL支持多种类型的存储引擎。所以,在不同存储引擎中索引的实现方式并不是一样的,也不是所有类型的索引都被所有存储引擎支持的,即使多个存储引擎支持同一种类型的索引,它底层的实现也有可能是不相同的。

数据库索引的实现原理

一、概述数据库索引,是数据库管理系统中一个排序的数据结构,以协助快速查询、更新数据库表中数据。索引的实现通常使用B树及其变种B+树。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法。这种数据结构,就是索引。其实说穿了,索引问题就是一个查找问题。二、索引的原理当我们的业务产生了大量的数据时,查找数据的效率问题也就随之而来,所以我们可以通过为表设置索引,而为表设置索引要付出代价的:一是增加了数据库的存储空间,二是在插入和修改数据时要花费较多的时间(因为索引也要随之变动)。

上图展示了一种可能的索引方式。左边是数据表,一共有两列七条记录,最左边的是数据记录的物理地址(注意逻辑上相邻的记录在磁盘上也并不是一定物理相邻的)。为了加快Col2的查找,可以维护一个右边所示的二叉查找树,每个节点分别包含索引键值和一个指向对应数据记录物理地址的指针,这样就可以运用二叉查找在O(log2n)的复杂度内获取到相应数据。索引是建立在数据库表中的某些列的上面。在创建索引的时候,应该考虑在哪些列上可以创建索引,在哪些列上不能创建索引。一般来说,应该在这些列上创建索引:在经常需要搜索的列上,可以加快搜索的速度;在作为主键的列上,强制该列的唯一性和组织表中数据的排列结构;在经常用在连接的列上,这些列主要是一些外键,可以加快连接的速度;在经常需要根据范围进行搜索的列上创建索引,因为索引已经排序,其指定的范围是连续的;在经常需要排序的列上创建索引,因为索引已经排序,这样查询可以利用索引的排序,加快排序查询时间;在经常使用在WHERE子句中的列上面创建索引,加快条件的判断速度。创建索引可以大大提高系统的性能第一,通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。第二,可以大大加快数据的检索速度,这也是创建索引的最主要的原因。第三,可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。第四,在使用分组和排序子句进行数据检索时,同样可以显着减少查询中分组和排序的时间。第五,通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。也许会有人要问:增加索引有如此多的优点,为什么不对表中的每一个列创建一个索引呢因为,增加索引也有许多不利的方面。创建索引的弊端第一,创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。第二,索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大。第三,当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。同样,对于有些列不应该创建索引。一般来说,不应该创建索引的的这些列具有下列特点:第一,对于那些在查询中很少使用或者参考的列不应该创建索引。这是因为,既然这些列很少使用到,因此有索引或者无索引,并不能提高查询速度。相反,由于增加了索引,反而降低了系统的维护速度和增大了空间需求。第二,对于那些只有很少数据值的列也不应该增加索引。这是因为,由于这些列的取值很少,例如人事表的性别列,在查询的结果中,结果集的数据行占了表中数据行的很大比例,即需要在表中搜索的数据行的比例很大。增加索引,并不能明显加快检索速度。第三,对于那些定义为text, image和bit数据类型的列不应该增加索引。这是因为,这些列的数据量要么相当大,要么取值很少。第四,当修改性能远远大于检索性能时,不应该创建索引。这是因为,修改性能和检索性能是互相矛盾的。当增加索引时,会提高检索性能,但是会降低修改性能。当减少索引时,会提高修改性能,降低检索性能。因此,当修改性能远远大于检索性能时,不应该创建索引。三、索引的类型根据数据库的功能,可以在数据库设计器中创建三种索引:唯一索引、主键索引和聚集索引。唯一索引唯一索引是不允许其中任何两行具有相同索引值的索引。当现有数据中存在重复的键值时,大多数数据库不允许将新创建的唯一索引与表一起保存。数据库还可能防止添加将在表中创建重复键值的新数据。例如,如果在employee表中职员的姓(lname)上创建了唯一索引,则任何两个员工都不能同姓。主键索引数据库表经常有一列或列组合,其值唯一标识表中的每一行。该列称为表的主键。在数据库关系图中为表定义主键将自动创建主键索引,主键索引是唯一索引的特定类型。该索引要求主键中的每个值都唯一。当在查询中使用主键索引时,它还允许对数据的快速访问。聚集索引在聚集索引中,表中行的物理顺序与键值的逻辑(索引)顺序相同。一个表只能包含一个聚集索引。如果某索引不是聚集索引,则表中行的物理顺序与键值的逻辑顺序不匹配。与非聚集索引相比,聚集索引通常提供更快的数据访问速度。四、局部性原理与磁盘预读由于存储介质的特性,磁盘本身存取就比主存慢很多,再加上机械运动耗费,磁盘的存取速度往往是主存的几百分分之一,因此为了提高效率,要尽量减少磁盘I/O。为了达到这个目的,磁盘往往不是严格按需读取,而是每次都会预读,即使只需要一个字节,磁盘也会从这个位置开始,顺序向后读取一定长度的数据放入内存。这样做的理论依据是计算机科学中着名的局部性原理:当一个数据被用到时,其附近的数据也通常会马上被使用。程序运行期间所需要的数据通常比较集中。由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),因此对于具有局部性的程序来说,预读可以提高I/O效率。预读的长度一般为页(page)的整倍数。页是计算机管理存储器的逻辑块,硬件及 *** 作系统往往将主存和磁盘存储区分割为连续的大小相等的块,每个存储块称为一页(在许多 *** 作系统中,页得大小通常为4k),主存和磁盘以页为单位交换数据。当程序要读取的数据不在主存中时,会触发一个缺页异常,此时系统会向磁盘发出读盘信号,磁盘会找到数据的起始位置并向后连续读取一页或几页载入内存中,然后异常返回,程序继续运行。五、B树和B+树数据结构1、B树B树中每个节点包含了键值和键值对于的数据对象存放地址指针,所以成功搜索一个对象可以不用到达树的叶节点。成功搜索包括节点内搜索和沿某一路径的搜索,成功搜索时间取决于关键码所在的层次以及节点内关键码的数量。在B树中查找给定关键字的方法是:首先把根结点取来,在根结点所包含的关键字K1,…,kj查找给定的关键字(可用顺序查找或二分查找法),若找到等于给定值的关键字,则查找成功;否则,一定可以确定要查的关键字在某个Ki或Ki+1之间,于是取Pi所指的下一层索引节点块继续查找,直到找到,或指针Pi为空时查找失败。2、B+树B+树非叶节点中存放的关键码并不指示数据对象的地址指针,非也节点只是索引部分。所有的叶节点在同一层上,包含了全部关键码和相应数据对象的存放地址指针,且叶节点按关键码从小到大顺序链接。如果实际数据对象按加入的顺序存储而不是按关键码次数存储的话,叶节点的索引必须是稠密索引,若实际数据存储按关键码次序存放的话,叶节点索引时稀疏索引。B+树有2个头指针,一个是树的根节点,一个是最小关键码的叶节点。所以 B+树有两种搜索方法:一种是按叶节点自己拉起的链表顺序搜索。一种是从根节点开始搜索,和B树类似,不过如果非叶节点的关键码等于给定值,搜索并不停止,而是继续沿右指针,一直查到叶节点上的关键码。所以无论搜索是否成功,都将走完树的所有层。B+ 树中,数据对象的插入和删除仅在叶节点上进行。这两种处理索引的数据结构的不同之处:1、B树中同一键值不会出现多次,并且它有可能出现在叶结点,也有可能出现在非叶结点中。而B+树的键一定会出现在叶结点中,并且有可能在非叶结点中也有可能重复出现,以维持B+树的平衡。2、因为B树键位置不定,且在整个树结构中只出现一次,虽然可以节省存储空间,但使得在插入、删除 *** 作复杂度明显增加。B+树相比来说是一种较好的折中。3、B树的查询效率与键在树中的位置有关,最大时间复杂度与B+树相同(在叶结点的时候),最小时间复杂度为1(在根结点的时候)。而B+树的时候复杂度对某建成的树是固定的。六、B/+Tree索引的性能分析到这里终于可以分析B-/+Tree索引的性能了。上文说过一般使用磁盘I/O次数评价索引结构的优劣。先从B-Tree分析,根据B-Tree的定义,可知检索一次最多需要访问h个节点。数据库系统的设计者巧妙利用了磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入。为了达到这个目的,在实际实现B-Tree还需要使用如下技巧:每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个node只需一次I/O。B-Tree中一次检索最多需要h-1次I/O(根节点常驻内存),渐进复杂度为O(h)=O(logdN)。一般实际应用中,出度d是非常大的数字,通常超过100,因此h非常小(通常不超过3)。而红黑树这种结构,h明显要深的多。由于逻辑上很近的节点(父子)物理上可能很远,无法利用局部性,所以红黑树的I/O渐进复杂度也为O(h),效率明显比B-Tree差很多。综上所述,用B-Tree作为索引结构效率是非常高的。

数据库索引是一种专用数据结构,允许我们快速定位信息。它的组织方式类似于二叉树结构,左侧值较小,右侧值较大。索引可以比较树状结构中的行值,以更快地定位所需数据,而不是强制扫描整个表。

当我们在一个或多个列上创建索引时,我们将它们的值存储在新结构中,还存储指行的指针。这行为会重新组织并排序信息,但不会改变信息本身。可以将数据库索引视为书后面的索引。虽然它存储了一些实际信息,但它还包含指针,指针指向可以找到更多详细信息的位置。

按照我们的搜索条件对数据进行排序后,查找所需的记录会变得更加简单。想象一下按字母顺序排序的旧电话簿。知道某人的姓氏,名字和地址意味着您可以很快找到他们的电话号码。但是如果你只知道别人的地址和名字怎么办?没有姓氏,找到电话号码将非常困难。您可以使用反向电话簿做得更好,该目录列出了基于地址的电话号码。

在数据库中,更改搜索条件通常意味着为属性组合创建新索引。如前所述,添加这些索引需要额外的磁盘空间。添加,删除或更新值时,还会对索引进行更改。

以上就是关于数据库中的索引是什么意思全部的内容,包括:数据库中的索引是什么意思、数据库中的索引是什么意思有什么用途、数据库索引怎么建立等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10049953.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-04
下一篇 2023-05-04

发表评论

登录后才能评论

评论列表(0条)

保存