ORACLE里几种锁模式

ORACLE里几种锁模式,第1张

ORACLE锁具体分为以下几类:

1按用户与系统划分,可以分为自动锁与显示锁

自动锁:当进行一项数据库 *** 作时,缺省情况下,系统自动为此数据库 *** 作获得所有有必要的

显示锁:某些情况下,需要用户显示的锁定数据库 *** 作要用到的数据,才能使数据库 *** 作执行得更好,显示锁是用户为数据库对象设定的。

2按锁级别划分,可分为共享锁与排它锁

共享锁:共享锁使一个事务对特定数据库资源进行共享访问——另一事务也可对此资源进行访问或获得相同共享锁。共享锁为事务提供高并发性,但如拙劣的事务设计+共享锁容易造成死锁或数据更新丢失。

排它锁:事务设置排它锁后,该事务单独获得此资源,另一事务不能在此事务提交之前获得相同对象的共享锁或排它锁。

3按 *** 作划分,可分为DML锁、DDL锁

+DML锁又可以分为,行锁、表锁、死锁

-行锁:当事务执行数据库插入、更新、删除 *** 作时,该事务自动获得 *** 作 表中 *** 作行的排它锁。

-表级锁:当事务获得行锁后,此事务也将自动获得该行的表锁(共享锁),以防止其它事务进行DDL语句影响记录行的更新。事务也可以在进行 过程中获得共享锁或排它锁,只有当事务显示使用LOCK TABLE语 句显示的定义一个排它锁时,事务才会获得表上的排它锁,也可使用

LOCK TABLE显示的定义一个表级的共享锁(LOCK TABLE具体用法请参 考相关文档)。

-死锁:当两个事务需要一组有冲突的锁,而不能将事务继续下去的话,就 出现死锁。

如事务1在表A行记录#3中有一排它锁,并等待事务2在表A中记录#4 中排它锁的释放,而事务2在表A记录行#4中有一排它锁,并等待事务 1在表A中记录#3中排它锁的释放,事务1与事务2彼此等待,因此就造 成了死锁。死锁一般是因拙劣的事务设计而产生。

死锁只能使用SQL下:alter system kill session 'sid,serial#';

或者使用相关 *** 作系统kill进程的命令,如UNIX下kill -9 sid,或者 使用其它工具杀掉死锁进程。

+DDL锁又可以分为:排它DDL锁、共享DDL锁、分析锁

-排它DDL锁:创建、修改、删除一个数据库对象的DDL语句获得 *** 作对象的 排它锁。

如使用alter table语句时,为了维护数据的完成性、一致性、

合法性,该事务获得一排它DDL锁。

-共享DDL锁:需在数据库对象之间建立相互依赖关系的DDL语句通常需共享

获得DDL锁。

如创建一个包,该包中的过程与函数引用了不同的数据库表,

当编译此包时,该事务就获得了引用表的共享DDL锁。

-分析锁:ORACLE使用共享池存储分析与优化过的SQL语句及PL/SQL程序,使

运行相同语句的应用速度更快。一个在共享池中缓存的对象获得

它所引用数据库对象的分析锁。分析锁是一种独特的DDL锁类型,

ORACLE使用它追踪共享池对象及它所引用数据库对象之间的依赖 关系。当一个事务修改或删除了共享池持有分析锁的数据库对象

时,ORACLE使共享池中的对象作废,下次在引用这条SQL/PLSQL语 句时,ORACLE重新分析编译此语句。

4内部闩锁

内部闩锁:这是ORACLE中的一种特殊锁,用于顺序访问内部系统结构。

当事务需向缓冲区写入信息时,为了使用此块内存区域, ORACLE首先必须取得这块内存区域的闩锁,才能向此块内存写入

信息。

1 引言—数据库锁的基本概念

为了确保并发用户在存取同一数据库对象时的正确性(即无丢失修改、可重复读、不读“脏”数据),数据库中引入了锁机制。基本的锁类型有两种:排它锁(Exclusive locks记为X锁)和共享锁(Share locks记为S锁)。

排它锁:若事务T对数据D加X锁,则其它任何事务都不能再对D加任何类型的锁,直至T释放D上的X锁;一般要求在修改数据前要向该数据加排它锁,所以排它锁又称为写锁。

共享锁:若事务T对数据D加S锁,则其它事务只能对D加S锁,而不能加X锁,直至T释放D上的S锁;一般要求在读取数据前要向该数据加共享锁,所以共享锁又称为读锁。

2 Oracle 多粒度封锁机制介绍

根据保护对象的不同,Oracle数据库锁可以分为以下几大类:

(1) DML lock(data locks,数据锁):用于保护数据的完整性;

(2) DDL lock(dictionary locks,字典锁):用于保护数据库对象的结构(例如表、视图、索引的结构定义);

(3) internal locks 和l a t c h es(内部锁与闩):保护内部数据库结构;

(4) distributed locks(分布式锁):用于OPS(并行服务器)中;

(5) PCM locks(并行高速缓存管理锁):用于OPS(并行服务器)中。

本文主要讨论DML(也可称为data locks,数据锁)锁。从封锁粒度(封锁对象的大小)的角度看,Oracle DML锁共有两个层次,即行级锁和表级锁。

21 Oracle的TX锁(行级锁、事务锁)

许多对Oracle不太了解的技术人员可能会以为每一个TX锁代表一条被封锁的数据行,其实不然。TX的本义是Transaction(事务),当一个事务第一次执行数据更改(Insert、Update、Delete)或使用SELECT… FOR UPDATE语句进行查询时,它即获得一个TX(事务)锁,直至该事务结束(执行COMMIT或ROLLBACK *** 作)时,该锁才被释放。所以,一个TX锁,可以对应多个被该事务锁定的数据行。

在Oracle的每行数据上,都有一个标志位来表示该行数据是否被锁定。Oracle不象其它一些DBMS(数据库管理系统)那样,建立一个链表来维护每一行被加锁的数据,这样就大大减小了行级锁的维护开销,也在很大程度上避免了其它数据库系统使用行级封锁时经常发生的锁数量不够的情况。数据行上的锁标志一旦被置位,就表明该行数据被加X锁,Oracle在数据行上没有S锁。

22 TM锁(表级锁)

221 意向锁的引出

表是由行组成的,当我们向某个表加锁时,一方面需要检查该锁的申请是否与原有的表级锁相容;另一方面,还要检查该锁是否与表中的每一行上的锁相容。比如一个事务要在一个表上加S锁,如果表中的一行已被另外的事务加了X锁,那么该锁的申请也应被阻塞。如果表中的数据很多,逐行检查锁标志的开销将很大,系统的性能将会受到影响。为了解决这个问题,可以在表级引入新的锁类型来表示其所属行的加锁情况,这就引出了“意向锁”的概念。

意向锁的含义是如果对一个结点加意向锁,则说明该结点的下层结点正在被加锁;对任一结点加锁时,必须先对它的上层结点加意向锁。如:对表中的任一行加锁时,必须先对它所在的表加意向锁,然后再对该行加锁。这样一来,事务对表加锁时,就不再需要检查表中每行记录的锁标志位了,系统效率得以大大提高。

222 意向锁的类型

由两种基本的锁类型(S锁、X锁),可以自然地派生出两种意向锁:

意向共享锁(Intent Share Lock,简称IS锁):如果要对一个数据库对象加S锁,首先要对其上级结点加IS锁,表示它的后裔结点拟(意向)加S锁;

意向排它锁(Intent Exclusive Lock,简称IX锁):如果要对一个数据库对象加X锁,首先要对其上级结点加IX锁,表示它的后裔结点拟(意向)加X锁。

另外,基本的锁类型(S、X)与意向锁类型(IS、IX)之间还可以组合出新的锁类型,理论上可以组合出4种,即:S+IS,S+IX,X+IS,X+IX,但稍加分析不难看出,实际上只有S+IX有新的意义,其它三种组合都没有使锁的强度得到提高(即:S+IS=S,X+IS=X,X+IX=X,这里的“=”指锁的强度相同)。所谓锁的强度是指对其它锁的排斥程度。

这样我们又可以引入一种新的锁的类型

共享意向排它锁(Shared Intent Exclusive Lock,简称SIX锁) :如果对一个数据库对象加SIX锁,表示对它加S锁,再加IX锁,即SIX=S+IX。例如:事务对某个表加SIX锁,则表示该事务要读整个表(所以要对该表加S锁),同时会更新个别行(所以要对该表加IX锁)。

这样数据库对象上所加的锁类型就可能有5种:即S、X、IS、IX、SIX。

具有意向锁的多粒度封锁方法中任意事务T要对一个数据库对象加锁,必须先对它的上层结点加意向锁。申请封锁时应按自上而下的次序进行;释放封锁时则应按自下而上的次序进行;具有意向锁的多粒度封锁方法提高了系统的并发度,减少了加锁和解锁的开销。

ix是意向锁。

意向锁与其说是锁,倒不如说更像一个指示器。在SQL Server中,资源是有层次的,一个表中可以包含N个页,而一个页中可以包含N个行。当我们在某一个行中加了锁时。可以理解成包含这个行的页,和表的一部分已经被锁定。当另一个查询需要锁定页或是表时,再一行行去看这个页和表中所包含的数据是否被锁定就有点太痛苦了。因此SQL Server锁定一个粒度比较低的资源时,会在其父资源上加上意向锁,告诉其他查询这个资源的某一部分已经上锁。比如,当我们更新一个表中的某一行时,其所在的页和表都会获得意向排他锁,如图所示。

行级锁,一般是指排它锁,即被锁定行不可进行修改,删除,只可以被其他会话select。行级锁之前需要先加表结构共享锁。

表级锁,一般是指表结构共享锁锁,是不可对该表执行DDL *** 作,但对DML *** 作都不限制。

行级锁之前需要先加表结构共享锁。

根据锁的类型分,共有6种

LMODE

1、NULL,可以某些情况下,如分布式数据库的查询会产生此锁。

2、SS,表结构共享锁

3、SX,表结构共享锁+被 *** 作的记录的排它锁

4、S, 表结构共享锁+所有记录共享锁

5、SRX 表结构共享锁+所有记录排它锁

6、X 表结构排它锁+所有记录排它锁

1151 锁的概念

锁(Lock) 是在多用户环境下对资源访问的一种限制。机制当对一个数据源加锁后,此数据源就有了一定的访问限制。我们就称对此数据源进行了“锁定”。在SQL Server中,可以对以下的对象进行锁定:

数据行(Row):数据页中的单行数据;

索引行(Key):索引页中的单行数据,即索引的键值;

页(Page):页是SQL Server 存取数据的基本单位,其大小为8KB;

盘区(Extent):一个盘区由8 个连续的页组成;

表(Table);

数据库(Database)。

1152 锁的类别

在SQL Server 中,锁有两种分类方法。

(1) 从数据库系统的角度来看

锁分为以下三种类型:

独占锁(Exclusive Lock)

独占锁锁定的资源只允许进行锁定 *** 作的程序使用,其它任何对它的 *** 作均不会被接受。执行数据更新命令,即INSERT、 UPDATE 或DELETE 命令时,SQL Server 会自动使用独占锁。但当对象上有其它锁存在时,无法对其加独占锁。独占锁一直到事务结束才能被释放。

共享锁(Shared Lock)

共享锁锁定的资源可以被其它用户读取,但其它用户不能修改它。在SELECT 命令执行时,SQL Server 通常会对对象进行共享锁锁定。通常加共享锁的数据页被读取完毕后,共享锁就会立即被释放。

更新锁(Update Lock)

更新锁是为了防止死锁而设立的。当SQL Server 准备更新数据时,它首先对数据对象作更新锁锁定,这样数据将不能被修改,但可以读取。等到SQL Server 确定要进行更新数据 *** 作时,它会自动将更新锁换为独占锁。但当对象上有其它锁存在时,无法对其作更新锁锁定。

(2)从程序员的角度看

锁分为以下两种类型:

乐观锁(Optimistic Lock)

乐观锁假定在处理数据时,不需要在应用程序的代码中做任何事情就可以直接在记录上加锁、即完全依靠数据库来管理锁的工作。一般情况下,当执行事务处理时SQL Server会自动对事务处理范围内更新到的表做锁定。

悲观锁(Pessimistic Lock)

悲观锁对数据库系统的自动管理不感冒,需要程序员直接管理数据或对象上的加锁处理,并负责获取、共享和放弃正在使用的数据上的任何锁。

1153 隔离级别

隔离(Isolation) 是计算机安全学中的一种概念,其本质上是一种封锁机制。它是指自动数据处理系统中的用户和资源的相关牵制关系,也就是用户和进程彼此分开,且和 *** 作系统的保护控制也分开来。在SQL Server 中,隔离级(Isolation Level) 是指一个事务 和其它事务的隔离程度,即指定了数据库如何保护(锁定)那些当前正在被其它用户或服务器请求使用的数据。指定事务的隔离级与在SELECT 语句中使用锁定选项来控制锁定 方式具有相同的效果。

在SQL Server 中有以下四种隔离级:

READ COMMITTED

在此隔离级下,SELECT 命令不会返回尚未提交(Committed) 的数据,也不能返回脏数据。它是SQL Server 默认的隔离级。

READ UNCOMMITTED

与READ COMMITTED 隔离级相反,它允许读取已经被其它用户修改但尚未提交确定的数据。

REPEATABLE READ

在此隔离级下,用SELECT 命令读取的数据在整个命令执行过程中不会被更改。此选项会影响系统的效能,非必要情况最好不用此隔离级。

SERIALIZABLE

与DELETE 语句中SERIALIZABLE 选项含义相同。

隔离级需要使用SET 命令来设定其语法如下:

SET TRANSACTION ISOLATION LEVEL

{READ COMMITTED

| READ UNCOMMITTED

| REPEATABLE READ

| SERIALIZABLE }

1154 查看锁

可以通过企业管理器或存储过程来查看锁。

(1) 用Enterprise Manager 查看锁

在企业管理器中选择目录树窗口中“Management” 文件夹下,“Current Activity” 中的“Locks / Process ID” 节点,则可以查看当前锁定的进程;选择同级的“Locks / Object”节点下的相应字节点,则可以查看当前锁定的对象,如图11-1 所示。在图11-1 中,右键单击任务板窗口中的对象,从快捷菜单中选择“属性”选项,则会出现如图11-2 所示的锁的进程细节对话框。在此,可以刷新或杀死锁的进程。

杀死进程还可以用如下Transact-SQL 命令来进行:

KILL spid

spid 是System Process ID, 即系统进程编号的缩写,如图11-1 中所示。

图11-2 锁定的进程细节

(2) 用系统存储过程Sp_lock 查看锁

存储过程Sp_lock 的语法如下:

sp_lock spid

SQL Server 的进程编号spid 可以在masterdbosysprocesses 系统表中查到。spid 是INT类型的数据,如果不指定spid ,则显示所有的锁。

1155 死锁及其防止

死锁(Deadlocking) 是在多用户或多进程状况下,为使用同一资源而产生的无法解决的争用状态,通俗地讲,就是两个用户各占用一个资源,两人都想使用对方的资源,但同时又不愿放弃自己的资源,就一直等待对方放弃资源,如果不进行外部干涉,就将一直耗下去。

死锁会造成资源的大量浪费,甚至会使系统崩溃。在SQL Server 中解决死锁的原则是“牺牲一个比两个都死强”,即挑出一个进程作为牺牲者,将其事务回滚,并向执行此进程的程序发送编号为1205 的错误信息。而防止死锁的途径就是不能让满足死锁条件的情况发生,为此,用户需要遵循以下原则:

尽量避免并发地执行涉及到修改数据的语句;

要求每个事务一次就将所有要使用的数据全部加锁,否则就不予执行;

预先规定一个封锁顺序所有的事务,都必须按这个顺序对数据执行封锁,例如,不同的过程在事务内部对对象的更新执行顺序应尽量保持一致;

每个事务的执行时间不可太长,对程序段长的事务可考虑将其分割为几个事务。

本章小结

本章中介绍了数据更新的方法及事务和锁的概念。除了使用本章讲述的语句更新数据外,还可以使用视图来更新数据,有关视图的运用请参见第13 章“游标和视图”。

12 事务的ACID原则

13 锁是关系数据库很重要的一部分, 数据库必须有锁的机制来确保数据的完整和一致性 131 SQL Server中可以锁定的资源:

132 锁的粒度:

133 锁的升级: 锁的升级门限以及锁升级是由系统自动来确定的,不需要用户设置 134 锁的类型: (1) 共享锁: 共享锁用于所有的只读数据 *** 作 (2) 修改锁: 修改锁在修改 *** 作的初始化阶段用来锁定可能要被修改的资源,这样可以避免使用共享锁造成的死锁现象 (3) 独占锁: 独占锁是为修改数据而保留的。它所锁定的资源,其他事务不能读取也不能修改。独占锁不能和其他锁兼容。 (4) 架构锁 结构锁分为结构修改锁(Sch-M)和结构稳定锁(Sch-S)。执行表定义语言 *** 作时,SQL Server采用Sch-M锁,编译查询时,SQL Server采用Sch-S锁。 (5) 意向锁 意向锁说明SQL Server有在资源的低层获得共享锁或独占锁的意向。 (6) 批量修改锁 批量复制数据时使用批量修改锁 134 SQL Server锁类型 (1) HOLDLOCK: 在该表上保持共享锁,直到整个事务结束,而不是在语句执行完立即释放所添加的锁。 (2) NOLOCK:不添加共享锁和排它锁,当这个选项生效后,可能读到未提交读的数据或“脏数据”,这个选项仅仅应用于SELECT语句。 (3) PAGLOCK:指定添加页锁(否则通常可能添加表锁)。 (4) READCOMMITTED用与运行在提交读隔离级别的事务相同的锁语义执行扫描。默认情况下,SQL Server 2000 在此隔离级别上 *** 作。 (5) READPAST: 跳过已经加锁的数据行,这个选项将使事务读取数据时跳过那些已经被其他事务锁定的数据行,而不是阻塞直到其他事务释放锁, READPAST仅仅应用于READ COMMITTED隔离性级别下事务 *** 作中的SELECT语句 *** 作。 (6) READUNCOMMITTED:等同于NOLOCK。 (7) REPEATABLEREAD:设置事务为可重复读隔离性级别。 (8) ROWLOCK:使用行级锁,而不使用粒度更粗的页级锁和表级锁。

MyISAM和InnoDB存储引擎使用的锁:

封锁粒度小:

由于InnoDB存储引擎支持的是行级别的锁,因此意向锁(因为意向锁是表锁)其实不会阻塞除全表扫以外的任何请求。故表级意向锁与行级锁的兼容性如下所示

参考

参考

行锁的三种算法:

这条语句阻止其他事务插入10和20之间的数字,无论这个数字是否存在。 间隙可以跨越0个,单个或多个索引值。

>

1 数据库表锁定原理 11 目前的C/S,B/S结构都是多用户访问数据库,每个时间点会有成千上万个user来访问DB,其中也会同时存取同一份数据,会造成数据的不一致性或者读脏数据12 事务的ACID原则13 锁是关系数据库很重要的一部分, 数据库必须有锁的机制来确保数据的完整和一致性 131 SQL Server中可以锁定的资源:132 锁的粒度:133 锁的升级: 锁的升级门限以及锁升级是由系统自动来确定的,不需要用户设置 134 锁的类型: (1) 共享锁: 共享锁用于所有的只读数据 *** 作 (2) 修改锁: 修改锁在修改 *** 作的初始化阶段用来锁定可能要被修改的资源,这样可以避免使用共享锁造成的死锁现象 (3) 独占锁: 独占锁是为修改数据而保留的。它所锁定的资源,其他事务不能读取也不能修改。独占锁不能和其他锁兼容。 (4) 架构锁 结构锁分为结构修改锁(Sch-M)和结构稳定锁(Sch-S)。执行表定义语言 *** 作时,SQL Server采用Sch-M锁,编译查询时,SQL Server采用Sch-S锁。 (5) 意向锁 意向锁说明SQL Server有在资源的低层获得共享锁或独占锁的意向。 (6) 批量修改锁 批量复制数据时使用批量修改锁 134 SQL Server锁类型 (1) HOLDLOCK: 在该表上保持共享锁,直到整个事务结束,而不是在语句执行完立即释放所添加的锁。 (2) NOLOCK:不添加共享锁和排它锁,当这个选项生效后,可能读到未提交读的数据或“脏数据”,这个选项仅仅应用于SELECT语句。 (3) PAGLOCK:指定添加页锁(否则通常可能添加表锁)。 (4) READCOMMITTED用与运行在提交读隔离级别的事务相同的锁语义执行扫描。默认情况下,SQL Server 2000 在此隔离级别上 *** 作。 (5) READPAST: 跳过已经加锁的数据行,这个选项将使事务读取数据时跳过那些已经被其他事务锁定的数据行,而不是阻塞直到其他事务释放锁, READPAST仅仅应用于READ COMMITTED隔离性级别下事务 *** 作中的SELECT语句 *** 作。 (6) READUNCOMMITTED:等同于NOLOCK。 (7) REPEATABLEREAD:设置事务为可重复读隔离性级别。 (8) ROWLOCK:使用行级锁,而不使用粒度更粗的页级锁和表级锁。 (9) SERIALIZABLE:用与运行在可串行读隔离级别的事务相同的锁语义执行扫描。等同于 HOLDLOCK。 (10) TABLOCK:指定使用表级锁,而不是使用行级或页面级的锁,SQL Server在该语句执行完后释放这个锁,而如果同时指定了HOLDLOCK,该锁一直保持到这个事务结束。 (11) TABLOCKX:指定在表上使用排它锁,这个锁可以阻止其他事务读或更新这个表的数据,直到这个语句或整个事务结束。 (12) UPDLOCK :指定在读表中数据时设置更新 锁(update lock)而不是设置共享锁,该锁一直保持到这个语句或整个事务结束,使用UPDLOCK的作用是允许用户先读取数据(而且不阻塞其他用户读数据),并且保证在后来再更新数据时,这一段时间内这些数据没有被其他用户修改。 2 如何解除表的锁定,解锁就是要终止锁定的那个链接,或者等待该链接事务释放 21 Activity Monitor可以通过Wait Type, Blocked By栏位查看到,SPID 54 被SPID 53 阻塞 可以右键Details查到详细的SQL 语句,或Kill掉这个进程 22 SQL Server提供几个DMV,查看locks sysdm_exec_requests sysdm_tran_locks sysdm_os_waiting_tasks sysdm_tran_database_transactions (1) select from sysdm_tran_locks where resource_type<>'DATABASE' --and resource_database_id=DB_ID()

以上就是关于ORACLE里几种锁模式全部的内容,包括:ORACLE里几种锁模式、oracle--对锁机制的理解-、sql数据库里锁是什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10049963.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-04
下一篇 2023-05-04

发表评论

登录后才能评论

评论列表(0条)

保存