MPP的代表产品有:Vertica/Redshift(Paracel,被Amazon买买下了源码的license后变成Redshift)/Greenplum。仔细观察不难发现,这三者其实有非常很多相同点:
1全部基于PostgreSQL
2都是基于列的存储(Columnar Storage)
3 *** 作都是以Scan为基础,依赖Compression来提供性能的优化
GP数据库是业界最快最高性价比的关系型分布式数据库,它在开源的PostgreSQL的基础上采用MPP架构(Massive Parallel Processing,海量并行处理),具有强大的大规模数据分析任务处理能力,其主要关注在数据仓库和商业智能方面。
关系型数据库我们都知道,就类似于我们常用的oracle和mysql数据库,那什么叫做分布式数据库呢?
分布式数据库系统通常使用较小的计算机系统,每台计算机可单独放在一个地方,每台计算机中都可能有DBMS的一份完整拷贝副本,或者部分拷贝副本,并具有自己局部的数据库,位于不同地点的许多计算机通过网络互相连接,共同组成一个完整的、全局的逻辑上集中、物理上分布的大型数据库。
数据库是存放数据的仓库。它的存储空间很大,可以存放百万条、千万条、上亿条数据。但是数据库并不是随意地将数据进行存放,是有一定的规则的,否则查询的效率会很低。当今世界是一个充满着数据的互联网世界,充斥着大量的数据。即这个互联网世界就是数据世界。数据的来源有很多,比如出行记录、消费记录、浏览的网页、发送的消息等等。除了文本类型的数据,图像、音乐、声音都是数据。
数据库是一个按数据结构来存储和管理数据的计算机软件系统。数据库的概念实际包括两层意思:
(1)数据库是一个实体,它是能够合理保管数据的“仓库”,用户在该“仓库”中存放要管理的事务数据,“数据”和“库”两个概念结合成为数据库。
(2)数据库是数据管理的新方法和技术,它能更合适的组织数据、更方便的维护数据、更严密的控制数据和更有效的利用数据。
发展现状
在数据库的发展历史上,数据库先后经历了层次数据库、网状数据库和关系数据库等各个阶段的发展,数据库技术在各个方面的快速的发展。特别是关系型数据库已经成为目前数据库产品中最重要的一员,80年代以来, 几乎所有的数据库厂商新出的数据库产品都支持关系型数据库,即使一些非关系数据库产品也几乎都有支持关系数据库的接口。这主要是传统的关系型数据库可以比较好的解决管理和存储关系型数据的问题。随着云计算的发展和大数据时代的到来,关系型数据库越来越无法满足需要,这主要是由于越来越多的半关系型和非关系型数据需要用数据库进行存储管理,以此同时,分布式技术等新技术的出现也对数据库的技术提出了新的要求,于是越来越多的非关系型数据库就开始出现,这类数据库与传统的关系型数据库在设计和数据结构有了很大的不同, 它们更强调数据库数据的高并发读写和存储大数据,这类数据库一般被称为NoSQL(Not only SQL)数据库。 而传统的关系型数据库在一些传统领域依然保持了强大的生命力。
数据库管理系统
编辑
数据库管理系统是为管理数据库而设计的电脑软件系统,一般具有存储、截取、安全保障、备份等基础功能。数据库管理系统可以依据它所支持的数据库模型来作分类,例如关系式、XML;或依据所支持的计算机类型来作分类,例如服务器群集、移动电话;或依据所用查询语言来作分类,例如SQL、XQuery;或依据性能冲量重点来作分类,例如最大规模、最高运行速度;亦或其他的分类方式。不论使用哪种分类方式,一些DBMS能够跨类别,例如,同时支持多种查询语言。
打开软件,进入界面中。 双击“PostgresSQL 93”连接服务器 方法一:右键单击“postgres”,选择“新建对象”--新建数据库,设置新的数据库的参数,所有者一般默认为“postgres” 新建完后,不能立即看到界面上更新的数据,需要点击界面上的更新按钮
这种概念上的含混不清之所以还在流传,主要是因为不懂技术的人而喜欢这些概念的大有人在,所以也并不在意要去澄清概念。“既然分布式数据库是MPP架构,那么MPP架构就等于分布式数据库应该也没什么问题吧。”于是大家就都不在意了。
比如,ShardingSphere转向可插拔架构后,其核心流程里已经没有分片功能了,分片会作为可插拔能力的一部分接入到服务中。对于数据库中间件来说,几乎属于产品重定义。与许多人对数据库中间件的固有认知相悖,因为在许多人的理解中,数据库中间件不就是为了分库分表而存在的吗?
理解关系数据库中的相关概念、关系模型及其三要素;理解关系的性质及类型;理解完整性规则在关系数据库中的作用;理解关系代数运算,掌握传统的集合运算与专门的关系运算;理解并掌握关系演算。
很多人在对比两者时,其实并不知道MPP的含义究竟是什么、两者的可比性到底在哪里。实际上,当人们在对比两者时,与其说是对比架构,不如说是对比产品。虽然MPP的原意是“大规模并行处理”,但由于一些历史原因,现在当人们说到MPP架构时,它们实际上指代的是“分布式数据库”,而Hadoop架构指的则是以Hadoop项目为基础的一系列分布式计算和存储框架。不过由于MPP的字面意思,现实中还是经常有人纠结两者到底有什么联系和区别,两者到底是不是同一个层面的概念。
mpp是ms project创建的,安project方法和步骤如下:
1、第一步,打开下载盘 的 microsoft_project_2016_installerpkg安装程序,然后打开并运行安装向导,如下图所示,然后进入下一步>
2、其次,完成上述步骤后,单击继续以同意许可协议。d出的窗口将询问是否同意许可协议,单击“同意”按钮,如下图所示,然后进入下一步。
3、接着,完成上述步骤后,选择安装位置。如果不想更改,则可以默认继续。如果要更改安装位置,请单击“更改安装位置”按钮,如下图所示,然后进入下一步。
4、将d出安全验证。输入计算机密码,然后单击“安装软件”按钮,如下图所示,然后进入下一步。
5、接着,完成上述步骤后,将进入安装环节,等待绿色进度条完成并安装完毕,如下图所示,然后进入下一步。
6、然后,完成上述步骤后,将d出安装成功的提示。单击下面的“关闭”按钮以完成安装,如下图所示,然后进入下一步。
7、随后,完成上述步骤后,打开应用程序,就可以看到已安装的office办公软件了,如下图所示,然后进入下一步。
8、最后,完成上述步骤后,双击打开,就可以开始使用了,如下图所示。这样,问题就解决了。
Microsoft project是由Microsoft(微软)公司开发的一套基于 Windows *** 作系统的办公软件套装。常用组件有 project、 Word、Excel、PowerPoint等。
NUMA全称为Non-Uniform Memory Access,是主流服务服务器为了提高SMP的可扩展性而采用的一种体系结构。主流服务器一般由多个NUMA节点组成,每个NUMA节点是一个SMP结构,一般由多个CPU组成,并且具有本地内存和IO设备。NUMA节点可以直接访问本地内存,也可以通过NUMA互联模块访问其他NUMA节点的内存,但是访问本地内存的速度远远高于远程访问速度,因此,开发程序要尽量减少不同NUMA节点之间的信息交互。MPP是一种海量数据实时分析架构。 MPP作为一种不共享架构,每个节点运行自己的 *** 作系统和数据库等,节点之间信息交互只能通过网络连接实现。MPP架构目前被并行数据库广泛采用,一般通过scan、sort和merge等 *** 作符实时返回查询结果。目前采用MPP架构的实时查询系统有EMC Greenplum、HP Vertica和Googl jdjdzj e Dremel,这些都是实时数据处理领域非常有特点的系统,尤其是Dremel可以轻松扩展到上千台服务器,并在数秒内完成TB级数据的分析。Hadoop作为一个开源项目群本身和MPP并没有什么直接关系,Hadoop中的子项目MapReduce虽然也是做数据分析处理的,但是一般只适用于离线数据分析,区别与MPP较为明显。因为Map和Reduce两个过程涉及到输出文件的存取和大量网络传输,因此往往达不到实时处理的要求。与MapReduce 相似的系统还有Microsoft Dryad和Google pregel。综上所述,NUMA是一种体系结构,MPP是一种实时海量数据分析架构,而Hadoop是一个关于数据存储处理的项目群,其中的MapReduce是一种离线海量数据分析架构。实测对比GreenPlum和Hive,GP比Hive性能高出至少一个数量级,但是大部分场景下,依然是秒级甚至分钟级的延迟,距离具体通常意义的实时毫秒级,差距巨大。另外说一句,广义的Hadoop包括 Impala, Presto Distributed SQL Query Engine for Big Data 这些MPP架构的SQL引擎。Hadoop社区还在持续发展,Spark还在持续给人们带来惊喜,开源软件的迷人之处也在于此。
以上就是关于mpp架构数据库有哪些全部的内容,包括:mpp架构数据库有哪些、gp数据库全称是什么、什么是数据库等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)