将Elasticsearch和MySQL结合使用可以实现更好的搜索和分析功能。比如,可以将MySQL中的结构化数据导入到Elasticsearch中建立索引,从而实现更快速、更准确的搜索和分析。同时,Elasticsearch也可以将搜索结果与MySQL中的结构化数据进行关联,从而提供更丰富的搜索结果和分析报告。
此外,Elasticsearch还可以作为MySQL的缓存层,用于加速访问和查询速度。将经常查询的数据存储在Elasticsearch中,可以大大减少MySQL的查询负载,提高系统性能和响应速度。
总之,结合使用Elasticsearch和MySQL可以充分发挥它们各自的优势,实现更好的搜索和分析功能,同时提高系统性能和响应速度。
MySQL支持全文索引和搜索功能。在MySQL中可以在CHAR、VARCHAR或TEXT列使用FULLTETXT来创建全文索引。
FULLTEXT索引主要用MATCH()...AGAINST语法来实现搜索:
MySQL的全文搜索存在以下局限:
通常来说MySQL自带的全文搜索使用起来局限性比较大,性能和功能都不太成熟,主要适用于小项目,大项目还是建议使用elasticsearch来做全文搜索。
ElasticSearch是一个分布式的开源搜索和分析引擎,适用于所有类型的数据,包括文本、数字、地理空间、结构化和非结构化数据,以下简称ES。
Elasticsearch 在 Apache Lucene 的基础上开发而成,Elasticsearch 以其简单的 REST 风格 API、分布式特性、速度和可扩展性而闻名,是 Elastic Stack 的核心组件。Elastic Stack 是适用于数据采集、充实、存储、分析和可视化的一组开源工具。
Elasticsearch 的实现原理主要分为以下几个步骤,首先用户将数据提交到Elasticsearch 数据中心,再通过分词控制器去将对应的数据分词,将其权重和分词结果一并存入数据,当用户搜索数据时候,再根据权重将结果排名,打分,再将返回结果呈现给用户。
由于ES是基于RESTfull Web接口的,因此我们直接按照惯例传递JSON参数调用接口即可实现增删改查,并且不需要我们做额外的管理 *** 作就可以直接索引文档,ES已经内置了所有的缺省 *** 作,可以自动帮我们定义类型。
再次执行PUT,会对库中已有的id为1的数据进行覆盖,每修改一次_version字段的版本号就会加1。
默认搜索会返回前10个结果:
返回的几个关键词:
查询字符串搜索,可以像传递URL参数一样传递查询语句。
精确查询:
全文搜索:
以上两种方法都需要考虑数据更改后如何与ES进行同步。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)