如果只是为了备份、恢复时每个营业部的数据相互不影响,那个人建议完全没必要将数据库拆分,如果数据库拆分了,当对不同业务部数据进行同比、环比的销售对比分析时,那程序的开发工作量就会加大了,同时多个数据库的维护对系统管理员的工作量也有了提升。总之对开发方和维护方都带来了额外的工作量。
大数据分析的前瞻性使得很多公司以及企业都开始使用大数据分析对公司的决策做出帮助,而大数据分析是去分析海量的数据,所以就不得不借助一些工具去分析大数据,。一般来说,数据分析工作中都是有很多层次的,这些层次分别是数据存储层、数据报表层、数据分析层、数据展现层。对于不同的层次是有不同的工具进行工作的。下面小编就对大数据分析工具给大家好好介绍一下。
首先我们从数据存储来讲数据分析的工具。我们在分析数据的时候首先需要存储数据,数据的存储是一个非常重要的事情,如果懂得数据库技术,并且能够 *** 作好数据库技术,这就能够提高数据分析的效率。而数据存储的工具主要是以下的工具。
1、MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力。
2、SQL Server的最新版本,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了。
3、DB2,Oracle数据库都是大型数据库了,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台;
接着说数据报表层。一般来说,当企业存储了数据后,首先要解决报表的问题。解决报表的问题才能够正确的分析好数据库。关于数据报表所用到的数据分析工具就是以下的工具。
1、Crystal Report水晶报表,Bill报表,这都是全球最流行的报表工具,非常规范的报表设计思想,早期商业智能其实大部分人的理解就是报表系统,不借助IT技术人员就可以获取企业各种信息——报表。
2、Tableau软件,这个软件是近年来非常棒的一个软件,当然它已经不是单纯的数据报表软件了,而是更为可视化的数据分析软件,因为很多人经常用它来从数据库中进行报表和可视化分析。
第三说的是数据分析层。这个层其实有很多分析工具,当然我们最常用的就是Excel,我经常用的就是统计分析和数据挖掘工具;
1、Excel软件,首先版本越高越好用这是肯定的;当然对Excel来讲很多人只是掌握了5%Excel功能,Excel功能非常强大,甚至可以完成所有的统计分析工作!但是我也常说,有能力把Excel玩成统计工具不如专门学会统计软件;
2、SPSS软件:当前版本是18,名字也改成了PASW Statistics;我从30开始Dos环境下编程分析,到现在版本的变迁也可以看出SPSS社会科学统计软件包的变化,从重视医学、化学等开始越来越重视商业分析,现在已经成为了预测分析软件。
最后说表现层的软件。一般来说表现层的软件都是很实用的工具。表现层的软件就是下面提到的内容。
1、PowerPoint软件:大部分人都是用PPT写报告。
2、Visio、SmartDraw软件:这些都是非常好用的流程图、营销图表、地图等,而且从这里可以得到很多零件;
3、Swiff Chart软件:制作图表的软件,生成的是Flash
数据冗余指数据之间的重复,也可以说是同一数据存储在不同数据文件中的现象。可以说增加数据的独立性和减少数据冗余为企业范围信息资源管理和大规模信息系统获得成功的前提条件。
数据冗余会妨碍数据库中数据的完整性(integrality),也会造成存贮空间的浪费。尽可能地降低数据冗余度,是数据库设计的主要目标之一。关系模式的规范化理沦(以下称NF理论)的主要思想之一就是最小冗余原则,即规范化的关系模式在某种意义上应该冗余度最小。
但是,NF理论没有标准的概念可用,按等价原则,在有或没有泛关系假设(universal relation assumption)等不同前提下,冗余的定义可能有好几种。
扩展资料
数据的应用中为了某种目的采取数据冗余方式。
1、重复存储或传输数据以防止数据的丢失。
2、对数据进行冗余性的编码来防止数据的丢失、错误,并提供对错误数据进行反变换得到原始数据的功能。
3、为简化流程所造成额数据冗余。
4、为加快处理过程而将同一数据在不同地点存放。
5、为方便处理而使同一信息在不同地点有不同的表现形式。
6、大量数据的索引,一般在数据库中经常使用。
7、方法类的信息冗余。
8、为了完备性而配备的冗余数据。
9、规则性的冗余。根据法律、制度、规则等约束进行的。
10、为达到其他目的所进行的冗余。
参考资料来源:百度百科-数据冗余
参考资料来源:百度百科-数据冗余度
以上就是关于一个系统的数据库拆分成多个数据库好吗又如何把这些拆分的数据库数据统一起来全部的内容,包括:一个系统的数据库拆分成多个数据库好吗又如何把这些拆分的数据库数据统一起来、目前都有哪些数据分析的工具、什么是数据库中的数据冗余如何消除数据冗余等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)