对于图像和音频的数据挖掘属于()挖掘

对于图像和音频的数据挖掘属于()挖掘,第1张

对于图像和音频的数据挖掘属于间接数据。

1、间接数据挖掘,目标中没有选出某一具体的变量,用模型进行描述,而是在所有的变量中建立起某种关系。

2、分类、估值、预言属于直接数据挖掘,相关性分组或关联规则聚类,描述和可视化复杂数据类型挖掘,图形图像,视频,音频等属于间接数据挖掘。

总体上来讲,数据分析挖掘体系可分为 数据预处理、分析挖掘、数据探索、数据展现和分析工具 。

数据预处理

数据预处理包含 数据清洗、数据集成、数据变换和数据规约 几种方法。

而数据清洗包括缺失值处理和异常值处理;

数据集成包括同名同义、异名同义、单位不统一的实体识别和冗余性识别。数据变化包括函数变换、规范化、连续属性离散化、属性沟通和小波变换。数据规约包括属性规约和数值规约。

分析挖掘

分析挖掘的内容就多了。包括假设检验、方差分析、回归分析、主成分分析、因子分析、典型相关分析、对应分析、多维尺度分析、信度分析、生存分析、分类预测、聚类分析、关联规则、时间序列分析和著名的灰色理论。后几个应用较多。

分类预测的方法包括决策树、神经网络、支持向量机(SVM)、Logistic回归、判别分析和贝叶斯网络。

聚类分析包括K-Means聚类、kohonen网络聚类、两步聚类和层次聚类。

关联规则的算法有Apriori算法、GRI算法和Carma算法。

时间序列分析包括:简单回归分析法。

趋势外推法、指数平滑法、自回归法、ARIMA模型、季节调整法。

灰色理论可分为灰色关联和灰色预测。

数据探索

数据探索主要分为两大类,数据质量分析和数据特征分析。

数据质量分析包括缺失值分析、异常值分析和一致性分析。

数据特征分析包括分布分析、对比分析、统计量分析、周期性分析、贡献度分析和相关性分析。

分析工具

常用的分析工具有Excel、clementine、Eviews、R语言、Matlab、Stata、SAS、Tableau、报表工具FineReport、商业智能FineBI

数据展现

在数据展现方面要做的内容可分为图表制作和数据分析报告的撰写,这两方面之前都写过详细的

文章图表制作可以用柱形图、条形图、折线图、饼图、面积图、雷达图、散点图等等。展现的方式可以是单图,组合图,多图搭配的dashboard或者深入分析的联动钻取等。

整理的思维导图如下(建议收藏):

Neo4j就是一个数据库(可以理解成一个类似HBASE的东西,不过Neo4j是几乎是单机数据库,于HBASE不同,HBASE的数据时存储在

HDFS上,由HDFS进行维护,HDFS将数据存储在exfat等单机文件系统上。Neo4j直接将数据格式化到单机文件系统)

每一个服务器保存完整的图数据。

GraphX是一个计算引擎(类似于maprece的东西),它的数据是从SHARK中使用SQL读取数据,或者RDD运算符从文件中读取,然后直接进行计算

另外数据库和计算引擎都可以进行计算任务,不过数据库的接口比较弱,只支持简单的查询

计算引擎提供了强大的计算接口,方便了编程,可以很容易的实现pagerank等图算法

GraphX做数据挖掘应该更方便,有通用的编程几口

Neo4j就需要自己写代码了编程比较麻烦,不过性能上或许有优势

热力图是数据挖掘分析统计部分。根据查询相关公开信息显示:热力图,是一种通过对色块着色来显示数据的统计图表,由4列组成,依次为统计指标、Y轴、X轴、数据(通过颜色深浅来体现),属于分析统计类。

大学的哪个专业是研究数据挖掘的?

数据挖掘(Data Mining),又称为数据库中的知识发现(Knowledge Discovery in Database, KDD),就是从大量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程,简单的说,数据挖掘就是从大量数据中提取或“挖掘”知识。

比如,软件开发专业,

具体以来的学科多了,给你个 网址:baikebaidu/view/7893

自己看下吧。很清楚了 !

数据分析员属于什么专业

没有属于什么专业,一般从事的人都是统计学或者数学专业的。

请问你是数据挖掘的研究生?数据挖掘研究生阶段都学什么?

首先,数据挖掘的技术有好多种,你要定位到某类数据挖激算法, 比如分类,聚类,关联规则,预测等等。

再次,就是根据你的定位,大量阅读国内外(特别是国外)研究人员对这类算法的改进及应用,要熟悉。。

然后呢,就是提出你对该算法的改进方法,并实现。

说白了,就是算法的改进,实现。

研究生教育就是这样,自己研究算法。跟实际的应用有些脱节的,实际应用中根本不会在意某个算法的执行效率等等。。。。

大数据属于什么专业?

应该归于计算机(软件)方面的专业吧

想当数据挖掘工程师要报什么大学专业 10分

本科或硕士以上学历,数据挖掘、统计学、数据库相关专业。

熟练掌握关系数据库技术,具有数据库系统开发经验;熟练掌握常用的数据挖掘算法;

具备数理统计理论基础,并熟悉常用的统计工具软件。

国内一批大学,211或者985最好。

数据挖掘,到底考研该考什么专业

数据方面的比较好

应该考虑自己的兴趣和爱好。兴趣是最好的老师,只有感兴趣的东西,才会真正投入的去学。

要选择与自己文化基础相适应的专业,以保证学习的顺利进行。比如说你的数学基础比较好,

逻辑思维比较灵活,则可以考虑选择理工类的专业。

不要急,总之,要自信,相信自己一定可以成功

考研想考数据挖掘方面 属于哪个二级学科呢? 100分

计算机,不过自动化或者统计的二级学科也可能会有

数据挖掘是什么工作呢?

数据挖掘指的是在长期积累的数据中分析和挖掘有价值的信息以供决策。这个概念主要还是因为ERP(企业资源计划)和OA(办公自动化)软件系统的广泛使用和发展的基础上出现的一个概念。因为企业在使用这些软件系统的过程中,虽然运营的状态和管理以及成本有很大的节约,大大提高了企业的运营效率,可是这些系统却只能对企业的状态和管理进行一个状态性的记录,对长期记录下来的这些数据的分析和在挖掘能力是非常有限的,虽然众多软件供应商想出各种办法来利用其这些数据,比如出各种报表甚至自定义的报表,可是仍然受制于ERP和OA本身设计的缺陷,因为它们原本就不是设计来做数据分析的。 所以在我们的软件系统实施的过程中,常常看到一个庞大的系统在运行,可是对于领导却只有每月看一两张报表的价值。所以,有人提出了数据挖掘的概念,长期使用ERP系统所积攒的数据就好像一大筐苹果,金苹果、银苹果、烂苹果都有,而数据挖掘工程师就是专门从中挑选出对企业有用的信息的工作。当然数据挖掘软件也是专门设计来做这个事情的。

想从事数据分析工作,考研应该考什么专业好一些,大数据或者数据挖掘可以吗? 30分

大数据 很好地 专业 你可以考 算法 或者数据分析,这个比较新 你要考的话 看一下 有没有 直接开这个专业的,我的研究生同学就转行 做这个了 ,很不错

数据挖掘与数据分析的主要区别是什么

总结一下主要有以下几点:

1、计算机编程能力的要求

作为数据分析很多情况下需要用到成型的分析工具,比如EXCEL、SPSS,或者SAS、R。一个完全不懂编程,不会敲代码的人完全可以是一名能好的数据分析师,因为一般情况下OFFICE包含的几个工具已经可以满足大多数数据分析的要求了。很多的数据分析人员做的工作都是从原始数据到各种拆分汇总,再经过分析,最后形成完整的分析报告。当然原始数据可以是别人提供,也可以自己提取(作为一名合格的数据分析师,懂点SQL知识是很有好处的)。

而数据挖掘则需要有编程基础。为什么这样说呢?举两个理由:第一个,目前的数据挖掘方面及相关的研究生方面绝大多数是隶属于计算机系;第二点,在招聘岗位上,国内比较大的公司挂的岗位名称大多数为“数据挖掘工程师”。从这两点就可以明确看出数据挖掘跟计算机跟编程有很大的联系。

2、在对行业的理解的能力

要想成为一名优秀的数据分析师,对于所从事的行业有比较深的了解和理解是必须要具备的,并且能够将数据与自身的业务紧密结合起来。简单举个例子来说,给你一份业务经营报表,你就能在脑海中勾画出目前经营状况图,能够看出哪里出现了问题。但是,从事数据挖掘不一定要求对行业有这么高的要求。

3、专业知识面的要求

数据分析师出对行业要了解外,还要懂得一些统计学、营销、经济、心理学、社会学等方面的知识,当然能了解数据挖掘的一些知识会更好。数据挖掘工程师则要求要比较熟悉数据库技术、熟悉数据挖掘的各种算法,能够根据业务需求建立数据模型并将模型应用于实际,甚至需要对已有的模型和算法进行优化或者开发新的算法模型。想要成为优秀的数据挖掘工程师,良好的数学、统计学、数据库、编程能力是必不可少的。

总之一句话来概括的话,数据分析师更关注于业务层面,数据挖掘工程师更关注于技术层面。

数据分析师与数据挖掘工程师的相似点:

1、都跟数据打交道。

他们玩的都是数据,如果没有数据或者蒐集不到数据,他们都要丢饭碗。

2、知识技能有很多交叉点。

他们都需要懂统计学,懂数据分析一些常用的方法,对数据的敏感度比较好。

3、在职业上他们没有很明显的界限。

很多时候数据分析师也在做挖掘方面的工作,而数据挖掘工程师也会做数据分析的工作,数据分析也有很多时候用到数据挖掘的工具和模型,很多数据分析从业者使用SAS、R就是一个很好的例子。而在做数据挖掘项目时同样需要有人懂业务懂数据,能够根据业务需要提出正确的数据挖掘需求和方案能够提出备选的算法模型,实际上这样的人一脚在数据分析上另一只脚已经在数据挖掘上了。

事实上没有必要将数据分析和数据挖掘分的特别清,但是我们需要看到两者的区别和联系,作为一名数据行业的从业者,要根据自身的特长和爱好规划自己的职业生涯,以寻求自身价值的最大化。

sc-cpda 数据分析公众交流平台

数据在我们这个时代变得越来越重要了,就像是黄金和石油一样宝贵,而数据可视化就是把杂乱无序的数据生成更直观的统计图形、图表等,来更加清晰有效地传递信息并以此做出决策。

既然已经有许多的答主推荐了很多好用的可视化工具,那我们就来讲讲怎样从杂乱无章的数据到最后生成易于理解和使用的数据报表的整个流程。

一、数据清洗

如何去整理分析数据,其中一个很重要的工作就是数据清洗。数据清洗是指对“脏”数据进行对应方式的处理,脏在这里意味着数据的质量不够好,会掩盖数据的价值,更会对其后的数据分析带来不同程度的影响。有调查称,一个相关项目的进展,80%的时间都可能会花费在这个工作上面。因为清洗必然意味着要对数据有一定的理解,而这个工作是自动化或者说计算机所解决不了的难题,只能靠人脑对数据进行重新审查和校验,找到问题所在,并通过一些方法去对对应的数据源进行重新整理。

清洗数据的方式大概可以分为以下几类,筛选、清除、补充、纠正,例如:

去除不需要的字段:简单,直接删除即可。但要记得备份。

填充缺失内容:以业务知识或经验推测填充缺失值;以同一指标的计算结果(均值、中位数、众数等)填充缺失值;以不同指标的计算结果填充缺失值。

格式不一致:时间、日期、数值、全半角等显示格式不一致,这种问题通常与输入端有关,在整合多来源数据时也有可能遇到,将其处理成一致的某种格式即可。例如一列当中储存的是时间戳,某些跨国公司的不同部门在时间的格式上有可能存在差别,比如2019-01-12,2019/01/12等,这时候需要将其转换成统一格式。

内容中有不需要的字符:某些情况使得有些数据中包含不需要的字符。例如从网络爬到的数据会包含一些编码解码的字符如%22,这种情况下,需要以半自动校验半人工方式来找出可能存在的问题,并去除不需要的字符。

数据提取:例如咱们只有用户身份z的信息,但是需要用户生日一列,这时候我们可以直接从身份z号中按照一定规律将生日信息提取出来。

以上只是一部分数据清洗的方式,具体清洗方式步骤还是需要放到具体的业务需求中。数据清洗永远不是独立存在的,它还和很多相关的领域一起并行,例如数据安全性、稳定性和成本。不同的情况下,需要考虑不同的数据清洗方式或者工具。

如果大家想要进一步去了解数据分析过程中的数据清洗,建议大家可以使用微策略的产品来体验一下数据清洗的方法和流程。

二、设计图表

设计图表的作用就是将数据转换为有意义的洞见,从而做出相应的商业决策。

通常来说,数据可视化的工具都会提供许多的图表来适用于不同的数据,在的产品中还可以自己添加第三方的图表或使用我们提供的SDK来丰富自己的可视化效果库。

例如我们在展示与地理相关的信息时,可以利用地图来更直观的表达,而折线图更加能反应出事物发展的趋势。

当然,静止图表显然不能满足现在的商业需求,用户可以自行添加筛选器来浏览不同维度的数据,也可以在两个图表之间建立映射关系,或者在单个图表中向下钻取。我们利用这些高级的数据分析功能,就可以找出隐藏在数据之下的洞见。

三、发布与分享

在商业环境中,数据的安全性十分重要,所以针对一个数据报表发布的过程中,我们会针对不同的部门或者不同的职位设置不同的访问权限。这样保证了设计一个数据报表就可以满足不同的地区和角色工作人员的数据访问需求。

另外,产品对多平台访问的支持也十分重要,许多的商业决策也许就在路途中做出,所以移动端的体验和桌面一样重要。

在的Library产品覆盖了桌面端和移动端,并且是为数不多能在移动端获得原生体验的产品。同时,用户也可以在产品中分享洞见、并与同事协同工作。

如今的商业决策,绝不仅仅只是基于以往经验的定性分析,通过数据可视化得出的洞见,并一步步量化得到最优解,从而使得风险最低、利润最大已经是行业趋势。随着大数据的在各行各业中的广泛应用,数据可视化的重要性也不言而喻,以上就是在商业环境中数据可视化的主要流程,感谢阅读。

以上就是关于对于图像和音频的数据挖掘属于()挖掘全部的内容,包括:对于图像和音频的数据挖掘属于()挖掘、1分钟了解数据分析挖掘体系、关于图数据库neo4j的关系建立(neo4j知识图谱可视化)等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10093066.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-05
下一篇 2023-05-05

发表评论

登录后才能评论

评论列表(0条)

保存