1、数据库应用开发 (application development)
除了基本的SQL方面的知识,还要对开发流程,软件工程,各种框架和开发工具等等
数据库应用开发这个方向上的机会最多,职位最多。
2、数据建模专家 (data modeler)
除了基本的SQL方面的知识,非常熟悉数据库原理,数据建模负责将用户对数据的需求转化为数据库物理设计和物理设计,这个方向上在大公司(金融,保险,研究,软件开发商等)有专门职位,在中小公司则可能由程序员承担。
3、商业智能专家 (business intelligence - BI)
主要从商业应用,最终用户的角度去从数据中获得有用的信息,涉及OLAP (online analytical processing) ,需要使用SSRS, cognos, crystal report等报表工具,或者其他一些数据挖掘,统计方面的软件工具。
4、ETL开发 (ETL Developer)
使用ETL工具或者自己编写程序在不同的数据源之间对数据进行导入,导出,转换,所接触的数据库一般数据量非常大,要求进行的数据转换也比较复杂和数据仓库和商业智能的关系比较密切。在一些数据库应用规模很大的公司里面有专门的职位,中小公司里面则可能由程序员或者DBA负责这方面的工作。
5、数据构架师 (Data Architect)
主要从全局上制定和控制关于数据库在逻辑这一层的大方向,也包括数据可用性,扩展性等长期性战略,协调数据库的应用开发,建模,DBA之间的工作。这个方向上在大公司(金融,保险,研究,软件开发商等)有专门职位, 在中小公司或者没有这个职位,或者由开发人员,DBA负责。
6、数据库管理员 (database administrator - DBA)
数据库的安装,配置,调优,备份/恢复,监控,自动化等,协助应用开发(有些职位还要求优化SQL,写存储过程和函数等)。这个方向上的职位相对少一些,但一般有点规模的公司还是会有这样的职位
7、数据仓库专家 (data warehouse - DW)
应付超大规模的数据,历史数据的存储,管理和使用,和商业智能关系密切,很多时候BI和DW是放在一个大类里面的,但是我觉得DW更侧重于硬件和物理层上的管理和优化。
8、存储工程师 (storage engineer)
专门负责提供数据存储方案,使用各种存储技术满足数据访问和存储需求,和DBA的工作关系比较密切。对高可用性有严格要求(比如通信,金融,数据中心等)的公司通常有这种职位, 这种职位也非常少。
9、性能优化工程师 (performance engineer)
专长数据库的性能调试和优化,为用户提供解决性能瓶颈方面的问题。也有专门的性能优化工程师,负责为其数据库产品和关键应用提供这方面的技术支持。对数据库性能有严格要求的公司(比如金融行业)可能会有这种职位。 因为针对性很强,甚至要求对多种数据库非常熟悉,所以职位极少。
10、高级数据库管理员 (senior DBA)
在DBA的基础上,还涉及上面3种职位的部分工作,具体包括下面这些:对应用系统的数据(布局,访问模式,增长模式,存储要求等)比较熟悉。对性能优化非常熟悉,可以发现并优化从SQL到硬件I/O,网络等各个层面上的瓶颈,对于存储技术相对熟悉,可能代替存储工程师的一些工作,对数据库的高可用性技术非常熟悉(比如MSSQL的集群,ORACLERAC/FailSafe, IBM的DPF, HADR等),对大规模数据库有效进行物理扩展(比如表分区)或者逻辑扩展(比如数据库分区,联合数据库等)。熟悉各种数据复制技术,比如单向,双向,点对点复制技术,以满足应用要求。灾难数据恢复过程的建立,测试和执行。这种职位一般只在对数据库要求非常高并且规模非常大(比如金融,电信,数据中心等)的公司需要,而且这种公司一般有一个专门独立负责数据库的部门或组。这种职位非常少。
基本上 *** 作各种数据库不近相同,其中access是小型数据库,sqlserver与oracal是中型的,DB是大型数据库。1、学习数据库的SQL语句,每个数据库基本上上不多,但是都有自己的不同,有的时间类型用‘’标识有的用#等。但是基本的SQL都是一样的select ,update,Insert,Delete,基本上学会了基础的,就学习高深一点的,如何联合表查询,编辑,修改。
2、这些熟悉以后,就要学习一下数据库的一些常用的系统函数,再之后就是要学习,存储过程,函数,触发器,事务。基本数据库这部分就没有什么问题了,只要不做高级的科研什么的,这些知识就都够了。要想学好数据库,就要多联系,自己创建一个带有逻辑的符合第三范式以上的数据库,然后写写SQL、触发器、存储过程、试图等。最重要的就是,把他们之间的逻辑搞清楚。
3、如果您想学SQL,您可以到可以看SQL Server 2014查询精讲系列课程,适合数据库管理员,计算机爱好者看看。
初学数据库应该从以下几点进行学习:一、编程语言基础
新手学大数据,首先要掌握基础的编程语言基础,比如Java、C++等,要初步掌握面向的对象、抽象类、接口及数据流及对象流等基础,如果有疑问,可以去网上搜索相关书籍,再结合自己的疑问去翻书,就能很快的熟悉了解数据库的基础技术原理。
二、Linux系统的基本 *** 作
Linux系统的基本 *** 作是大数据不可分割的一部分,企业的MySQL大数据的组件都是跑在linux环境下的,所以学会linux常用命令不能缺少,重点是要学习一下Linux环境的搭建,搭建平台,,能写shell程序就会更好了。
三、学习Hadoop架构设计
要学大数据,首先要了解的是如何在单台Windows系统上通过虚拟机搭建多台Linux虚拟机,从而构建Hadoop集群,再建立spark开发环境,环境搭建成功后在网上搜罗一些demo,sql脚本之类,直接动手敲进去一点一点体会。
四、采用机器学习模式
为了发挥出大数据的优势,提升你的办公效率,就需要实 *** 并应用其中的内容,必然也会涉及大量机器学习及算法,这能最大化的发挥出计算机的性能,也是大数据的优势所在。
想了解更多有关数据库的相关信息,推荐咨询达内教育。作为国内IT培训的领导品牌,达内的每一名员工都以“帮助每一个学员成就梦想”为己任,也正因为达内人的执着与努力,达内已成功为社会输送了众多合格人才,为广大学子提供更多IT行业高薪机会,同时也为中国IT行业的发展做出了巨大的贡献。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)