数据库与数据结构的区别

数据库与数据结构的区别,第1张

数据数据集合顾名思义库存储地方嘛即存放大量数据地方而往数据库里放数据或者访问数据库里数据方式数据结构内容了

数据库相当于容器数据结构相当于往容器里放东西方式和取东西方式没有数据结构容器里东西(数据)会杂乱无章取出来也麻烦

1、数据存储层

数据存储设计到数据库的概念和数据库语言,这方面不一定要深钻研,但至少要理解数据的存储方式,数据的基本结构和数据类型。SQL查询语言必不可少,精通最好。可从常用的selece查询,update修改,delete删除,insert插入的基本结构和读取入手。

Aess2003、Aess07等,这是最基本的个人数据库,经常用于个人或部分基本的数据存储;MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力;

SQLServer2005或更高版本,对中小企业,一些大型企业也可以采用SQLServer数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了;

DB2,Oracle数据库都是大型数据库,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台;

BI级别,实际上这个不是数据库,而是建立在前面数据库基础上的,企业级应用的数据仓库。DataWarehouse,建立在DW机上的数据存储基本上都是商业智能平台,整合了各种数据分析,报表、分析和展现,BI级别的数据仓库结合BI产品也是近几年的大趋势。

2、报表/BI层

企业存储了数据需要读取,需要展现,报表工具是最普遍应用的工具,尤其是在国内。过去传统报表大多解决的是展现问题,如今像帆软报表FineReport也会和其他应用交叉,做数据分析报表,通过接口开放功能、填报、决策报表功能,能够做到打通数据的进出,涵盖了早期商业智能的功能。

Tableau、Qlikview、FineBI这类BI工具,可分在报表层也可分为数据展现层,涵盖了数据整合、数据分析和数据展现。FineBI和Tableau同属于近年来非常棒的软件,可作为可视化数据分析软件,可常用FineBI从数据库中取数进行报表和可视化分析。相对而言,可视化Tableau更优,但FineBI又有另一种身份——商业智能,所以在大数据处理方面的能力更胜一筹。

简而言之,数据库是面向事务的设计,数据仓库是面向主题设计的

数据库一般存储在线交易数据,数据仓库存储的一般是历史数据

数据库设计是尽量避免冗余,一般采用符合范式的规则来设计,数据仓库在设计是有意引入冗余,采用反范式的方式来设计

数据库是为捕获数据而设计,数据仓库是为分析数据而设计,它的两个基本的元素是维表和事实表

维是看问题的角度,比如时间,部门,维表放的就是这些东西的定义,事实表里放着要查询的数据,同时有维的ID

单从概念上讲,有些晦涩

任何技术都是为应用服务的,结合应用可以很容易地理解

以银行业务为例

数据库是事务系统的数据平台,客户在银行做的每笔交易都会写入数据库,被记录下来,这里,可以简单地理解为用数据库记帐

数据仓库是分析系统的数据平台,它从事务系统获取数据,并做汇总、加工,为决策者提供决策的依据

比如,某银行某分行一个月发生多少交易,该分行当前存款余额是多少

如果存款又多,消费交易又多,那么该地区就有必要设立ATM了

显然,银行的交易量是巨大的,通常以百万甚至千万次来计算

事务系统是实时的,这就要求时效性,客户存一笔钱需要几十秒是无法忍受的,这就要求数据库只能存储很短一段时间的数据

而分析系统是事后的,它要提供关注时间段内所有的有效数据

这些数据是海量的,汇总计算起来也要慢一些,但是,只要能够提供有效的分析数据就达到目的了

数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它决不是所谓的“大型数据库”

那么,数据仓库与传统数据库比较,有哪些不同呢让我们先看看W

H

Inmon关于数据仓库的定义:面向主题的、集成的、与时间相关且不可修改的数据集合

“面向主题的”:传统数据库主要是为应用程序进行数据处理,未必按照同一主题存储数据;数据仓库侧重于数据分析工作,是按照主题存储的

这一点,类似于传统农贸市场与超市的区别—市场里面,白菜、萝卜、香菜会在一个摊位上,如果它们是一个小贩卖的;而超市里,白菜、萝卜、香菜则各自一块

也就是说,市场里的菜(数据)是按照小贩(应用程序)归堆(存储)的,超市里面则是按照菜的类型(同主题)归堆的

“与时间相关”:数据库保存信息的时候,并不强调一定有时间信息

数据仓库则不同,出于决策的需要,数据仓库中的数据都要标明时间属性

决策中,时间属性很重要

同样都是累计购买过九车产品的顾客,一位是最近三个月购买九车,一位是最近一年从未买过,这对于决策者意义是不同的

“不可修改”:数据仓库中的数据并不是最新的,而是来源于其它数据源

数据仓库反映的是历史信息,并不是很多数据库处理的那种日常事务数据(有的数据库例如电信计费数据库甚至处理实时信息)

因此,数据仓库中的数据是极少或根本不修改的;当然,向数据仓库添加数据是允许的

数据仓库的出现,并不是要取代数据库

目前,大部分数据仓库还是用关系数据库管理系统来管理的

可以说,数据库、数据仓库相辅相成、各有千秋

补充一下,数据仓库的方案建设的目的,是为前端查询和分析作为基础,由于有较大的冗余,所以需要的存储也较大

为了更好地为前端应用服务,数据仓库必须有如下几点优点,否则是失败的数据仓库方案

1

效率足够高

客户要求的分析数据一般分为日、周、月、季、年等,可以看出,日为周期的数据要求的效率最高,要求24小时甚至12小时内,客户能看到昨天的数据分析

由于有的企业每日的数据量很大,设计不好的数据仓库经常会出问题,延迟1-3日才能给出数据,显然不行的

2

数据质量

客户要看各种信息,肯定要准确的数据,但由于数据仓库流程至少分为3步,2次ETL,复杂的架构会更多层次,那么由于数据源有脏数据或者代码不严谨,都可以导致数据失真,客户看到错误的信息就可能导致分析出错误的决策,造成损失,而不是效益

3

扩展性

之所以有的大型数据仓库系统架构设计复杂,是因为考虑到了未来3-5年的扩展性,这样的话,客户不用太快花钱去重建数据仓库系统,就能很稳定运行

主要体现在数据建模的合理性,数据仓库方案中多出一些中间层,使海量数据流有足够的缓冲,不至于数据量大很多,就运行不起来了

连接用$con= mysql_connect("localhost","user","passw");

*** 作用sql_query("select or insert or ")

以上就是关于数据库与数据结构的区别全部的内容,包括:数据库与数据结构的区别、数据库和数据仓库有什么区别、php连接mysql数据库 怎么输入mysql言语等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10100870.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-05
下一篇 2023-05-05

发表评论

登录后才能评论

评论列表(0条)

保存