您好,MySQL事务对查询有着重要的影响。MySQL事务是一种数据库技术,它可以保证一组SQL语句在执行过程中的原子性,即要么全部执行,要么全部不执行。这意味着,当您使用MySQL事务时,您可以确保您的查询不会被中断,从而保证查询的完整性和一致性。MySQL事务还可以帮助您控制数据库的可用性,确保您的查询不会被其他用户的 *** 作所干扰。此外,MySQL事务还可以帮助您控制数据库的安全性,确保您的查询不会被未经授权的用户访问。总之,MySQL事务对查询有着重要的影响,它可以帮助您更好地控制数据库的可用性、一致性和安全性。
数据库选型,归根结底需要根据需求来进行决策。一般而言,在进行数据库选型时,需要考虑以下方面。
1)运维成本,包括监控告警是否完善、是否有备份恢复机制、升级和迁移的成本是否高、社区是否稳定、是否方便调优、排障是否简易等;
2)稳定性,包括是否支持数据多副本、服务高可用、多写多活等;
3)性能,包括延迟、QPS、TPS,以及是否支持更高级的分级存储功能等;
4)扩展性,如果业务的需求不确定,是否容易横向扩展和纵向扩容;
5)安全,需要符合审计要求,不容易出现 SQL 注入或拖库情况。
AntDB数据库,一款在通信行业得到充分使用的业内领先的国产数据库,帮助客户进行OLTP 与OLAP一站式处理的数据库产品,具备丰富配套工具和完整服务体系。依托多年的技术研发成果与成熟交付经验,提供面向多行业、多场景的一站式数据库产品、工具及服务的综合解决方案。AntDB 在全国 24 个省市的 200 多个项目上成功落地,支撑全国 10 亿电信用户的通话、上网、缴费、账单等海量业务数据交互。
MySQL 主从一直是面试常客,里面的知识点虽然基础,但是能回答全的同学不多。
比如楼哥之前面试小米,就被问到过主从复制的原理,以及主从延迟的解决方案,因为回答的非常不错,给面试官留下非常好的印象。你之前面试,有遇到过哪些 MySQL 主从的问题呢?
所谓 MySQL 主从,就是建立两个完全一样的数据库,一个是主库,一个是从库, 主库对外提供读写的 *** 作,从库对外提供读的 *** 作 ,下面是一主一从模式:
对于数据库单机部署,在 4 核 8G 的机器上运行 MySQL 57 时,大概可以支撑 500 的 TPS 和 10000 的 QPS, 当遇到一些活动时,查询流量骤然,就需要进行主从分离。
大部分系统的访问模型是读多写少,读写请求量的差距可能达到几个数量级,所以我们可以通过一主多从的方式, 主库只负责写入和部分核心逻辑的查询,多个从库只负责查询,提升查询性能,降低主库压力。
MySQL 主从还能做到服务高可用,当主库宕机时,从库可以切成主库,保证服务的高可用,然后主库也可以做数据的容灾备份。
整体场景总结如下:
MySQL 的主从复制是依赖于 binlog 的,也就是记录 MySQL 上的所有变化并以二进制形式保存在磁盘上二进制日志文件。
主从复制就是将 binlog 中的数据从主库传输到从库上,一般这个过程是异步的,即主库上的 *** 作不会等待 binlog 同步的完成。
详细流程如下:
当主库和从库数据同步时,突然中断怎么办?因为主库与从库之间维持了一个长链接,主库内部有一个线程,专门服务于从库的这个长链接的。
对于下面的情况,假如主库执行如下 SQL,其中 a 和 create_time 都是索引:
我们知道,数据选择了 a 索引和选择 create_time 索引,最后 limit 1 出来的数据一般是不一样的。
所以就会存在这种情况:在 binlog = statement 格式时,主库在执行这条 SQL 时,使用的是索引 a,而从库在执行这条 SQL 时,使用了索引 create_time,最后主从数据不一致了。
那么我们改如何解决呢?
可以把 binlog 格式修改为 row,row 格式的 binlog 日志记录的不是 SQL 原文,而是两个 event:Table_map 和 Delete_rows。
Table_map event 说明要 *** 作的表,Delete_rows event用于定义要删除的行为,记录删除的具体行数。 row 格式的 binlog 记录的就是要删除的主键 ID 信息,因此不会出现主从不一致的问题。
但是如果 SQL 删除 10 万行数据,使用 row 格式就会很占空间的,10 万条数据都在 binlog 里面,写 binlog 的时候也很耗 IO。但是 statement 格式的 binlog 可能会导致数据不一致。
设计 MySQL 的大叔想了一个折中的方案,mixed 格式的 binlog,其实就是 row 和 statement 格式混合使用, 当 MySQL 判断可能数据不一致时,就用 row 格式,否则使用就用 statement 格式。
有时候我们遇到从数据库中获取不到信息的诡异问题时,会纠结于代码中是否有一些逻辑会把之前写入的内容删除,但是你又会发现,过了一段时间再去查询时又可以读到数据了,这基本上就是主从延迟在作怪。
主从延迟,其实就是“从库回放” 完成的时间,与 “主库写 binlog” 完成时间的差值, 会导致从库查询的数据,和主库的不一致 。
谈到 MySQL 数据库主从同步延迟原理,得从 MySQL 的主从复制原理说起:
总结一下主从延迟的主要原因 :主从延迟主要是出现在 “relay log 回放” 这一步,当主库的 TPS 并发较高,产生的 DDL 数量超过从库一个 SQL 线程所能承受的范围,那么延时就产生了,当然还有就是可能与从库的大型 query 语句产生了锁等待。
我们一般会把从库落后的时间作为一个重点的数据库指标做监控和报警,正常的时间是在毫秒级别,一旦落后的时间达到了秒级别就需要告警了。
解决该问题的方法,除了缩短主从延迟的时间,还有一些其它的方法,基本原理都是尽量不查询从库。
具体解决方案如下:
在实际应用场景中,对于一些非常核心的场景,比如库存,支付订单等,需要直接查询从库,其它非核心场景,就不要去查主库了。
两台机器 A 和 B,A 为主库,负责读写,B 为从库,负责读数据。
如果 A 库发生故障,B 库成为主库负责读写,修复故障后,A 成为从库,主库 B 同步数据到从库 A。
一台主库多台从库,A 为主库,负责读写,B、C、D为从库,负责读数据。
如果 A 库发生故障,B 库成为主库负责读写,C、D负责读,修复故障后,A 也成为从库,主库 B 同步数据到从库 A。
场景很重要,比如一万并发的qps还是tps,这完全不同的概念。
服务器做做优化,现在通过epoll支撑百万连接十万并发没什么瓶颈。但是,这只是网络层,如果落到具体业务,那就另当别论了。比如redis可以十万并发,因为只需要网络io和访问内存。但是如果有业务处理,挂上了数据库,走了kafka,并且再走redis,那就要具体问题具体分析了。
数据库单存qps,我们原来基准测试结果是可以支撑六万到八万左右,但是有事务的增删改绝对不是这个量级。
其实你需要的是一个基准测试的结果,例如tcp,>
以上就是关于mysql事务对查询有没有影响全部的内容,包括:mysql事务对查询有没有影响、数据库有很多不同的类型,到底哪种能够满足你的需求如何挑选适合的数据库呢、MySQL 主从,5 分钟带你掌握等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)