如何对数据库性能进行优化

如何对数据库性能进行优化,第1张

1数据I/O方面硬件性能

最有可能影响性能的是磁盘和网络吞吐量。解决办法:

扩大虚拟内存,并保证有足够可以扩充的空间

数据库服务器上的不必要服务关闭掉

把SQL数据库服务器的吞吐量调为最大

2调整数据库

若对该表的查询频率比较高,则建立索引

分区(如MySQL,按时间分区)

尽量使用固定长度字段和限制字段长度(如 varchar(10))优势:

降低物理存储空间

提高数据库处理速度

附带校验数据库是否合法功能

3使用存储过程

应用程序的实现过程中,能够采用存储过程实现的对数据库的 *** 作尽量通过存储过程来实现。

因为存储过程是存放在数据库服务器上的一次性被设计、编码、测试,并被再次使用,需要执行该任务的应用可以简单地执行存储过程,并且只返回结果集或者数值。

这样不仅可以使程序模块化,同时提高响应速度,减少网络流量,并且通过输入参数接受输入,使得在应用中完成逻辑的一致性实现。

4SQL语句方面

建立查询条件索引仅仅是提高速度的前提条件,响应速度的提高还依赖于对索引的使用。不良的SQL往往来自于不恰当的索引设计、不充份的连接条件和不可优化的where子句。

优化sql语句,减少比较次数

限制返回条目数(mysql中使用limit)

5Java方面

尽可能的少创造对象

合理摆正系统设计的位置。大量数据 *** 作,和少量数据 *** 作一定是分开的。

合理利用内存,有的数据要缓存。让数据流起来,而不是全部读到内存再处理,而是边读取边处理。

1、调整数据结构的设计。这一部分在开发信息系统之前完成,程序员需要考虑是否使用ORACLE数据库的分区功能,对于经常访问的数据库表是否需要建立索引等。

2、调整应用程序结构设计。这一部分也是在开发信息系统之前完成,程序员在这一步需要考虑应用程序使用什么样的体系结构,是使用传统的Client/Server两层体系结构,还是使用Browser/Web/Database的三层体系结构。不同的应用程序体系结构要求的数据库资源是不同的。

3、调整数据库SQL语句。应用程序的执行最终将归结为数据库中的SQL语句执行,因此SQL语句的执行效率最终决定了ORACLE数据库的性能。ORACLE公司推荐使用ORACLE语句优化器(Oracle Optimizer)和行锁管理器(row-level manager)来调整优化SQL语句。

4、调整服务器内存分配。内存分配是在信息系统运行过程中优化配置的,数据库管理员可以根据数据库运行状况调整数据库系统全局区(SGA区)的数据缓冲区、日志缓冲区和共享池的大小;还可以调整程序全局区(PGA区)的大小。需要注意的是,SGA区不是越大越好,SGA区过大会占用 *** 作系统使用的内存而引起虚拟内存的页面交换,这样反而会降低系统。

5、调整硬盘I/O,这一步是在信息系统开发之前完成的。数据库管理员可以将组成同一个表空间的数据文件放在不同的硬盘上,做到硬盘之间I/O负载均衡。

6、调整 *** 作系统参数,例如:运行在UNIX *** 作系统上的ORACLE数据库,可以调整UNIX数据缓冲池的大小,每个进程所能使用的内存大小等参数。

数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数据存储的大型数据库系统都在各个方面得到了广泛的应用。

在信息化社会,充分有效地管理和利用各类信息资源,是进行科学研究和决策管理的前提条件。数据库技术是管理信息系统、办公自动化系统、决策支持系统等各类信息系统的核心部分,是进行科学研究和决策管理的重要技术手段。

在经济管理的日常工作中,常常需要把某些相关的数据放进这样的“仓库”,并根据管理的需要进行相应的处理。

例如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。

扩展资料

数据库,简单来说是本身可视为电子化的文件柜--存储电子文件的处所,用户可以对文件中的数据进行新增、截取、更新、删除等 *** 作。

数据库指的是以一定方式储存在一起、能为多个用户共享、具有尽可能小的冗余度的特点、是与应用程序彼此独立的数据集合。

在经济管理的日常工作中,常常需要把某些相关的数据放进这样的"仓库",并根据管理的需要进行相应的处理。

例如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。

参考资料:

数据库的百度百科

你好!如果有大量的访问用到调取到数据库时,往往查询速度会变得很慢,所以我们需要进行优化处理。

优化从三个方面考虑:

SQL语句优化、

主从复制,读写分离,负载均衡、

数据库分库分表。

一、SQL查询语句优化

1、使用索引

建立索引可以使查询速度得到提升,我们首先应该考虑在where及orderby,groupby涉及的列上建立索引。

2、借助explain(查询优化神器)选择更好的索引和优化查询语句

SQL的Explain通过图形化或基于文本的方式详细说明了SQL语句的每个部分是如何执行以及何时执行的,以及执行效果。通过对选择更好的索引列,或者对耗时久的SQL语句进行优化达到对查询速度的优化。

3、任何地方都不要使用SELECTFROM语句。

4、不要在索引列做运算或者使用函数

5、查询尽可能使用limit来减少返回的行数

6、使用查询缓存,并将尽量多的内存分配给MYSQL做缓存

二、主从复制,读写分离,负载均衡

目前大多数的主流关系型数据库都提供了主从复制的功能,通过配置两台(或多台)数据库的主从关系,可以将一台数据库服务器的数据更新同步到另一台服务器上。网站可以利用数据库这一功能,实现数据库的读写分离,从而改善数据库的负载压力。一个系统的读 *** 作远远多于写 *** 作,因此写 *** 作发向master,读 *** 作发向slaves进行 *** 作(简单的轮询算法来决定使用哪个slave)。

利用数据库的读写分离,Web服务器在写数据的时候,访问主数据库(master),主数据库通过主从复制将数据更新同步到从数据库(slave),这样当Web服务器读数据的时候,就可以通过从数据库获得数据。这一方案使得在大量读 *** 作的Web应用可以轻松地读取数据,而主数据库也只会承受少量的写入 *** 作,还可以实现数据热备份,可谓是一举两得。

三、数据库分表、分区、分库

1、分表

通过分表可以提高表的访问效率。有两种拆分方法:

垂直拆分

在主键和一些列放在一个表中,然后把主键和另外的列放在另一个表中。如果一个表中某些列常用,而另外一些不常用,则可以采用垂直拆分。

水平拆分

根据一列或者多列数据的值把数据行放到两个独立的表中。

2、分区

分区就是把一张表的数据分成多个区块,这些区块可以在一个磁盘上,也可以在不同的磁盘上,分区后,表面上还是一张表,但是数据散列在多个位置,这样一来,多块硬盘同时处理不同的请求,从而提高磁盘I/O读写性能。实现比较简单,包括水平分区和垂直分区。

3、分库

分库是根据业务不同把相关的表切分到不同的数据库中,比如web、bbs、blog等库。

分库解决的是数据库端并发量的问题。分库和分表并不一定两个都要上,比如数据量很大,但是访问的用户很少,我们就可以只使用分表不使用分库。如果数据量只有1万,而访问用户有一千,那就只使用分库。

注意:分库分表最难解决的问题是统计,还有跨表的连接(比如这个表的订单在另外一张表),解决这个的方法就是使用中间件,比如大名鼎鼎的MyCat,用它来做路由,管理整个分库分表,乃至跨库跨表的连接

在开始演示之前,我们先介绍下两个概念。

概念一,数据的可选择性基数,也就是常说的cardinality值。

查询优化器在生成各种执行计划之前,得先从统计信息中取得相关数据,这样才能估算每步 *** 作所涉及到的记录数,而这个相关数据就是cardinality。简单来说,就是每个值在每个字段中的唯一值分布状态。

比如表t1有100行记录,其中一列为f1。f1中唯一值的个数可以是100个,也可以是1个,当然也可以是1到100之间的任何一个数字。这里唯一值越的多少,就是这个列的可选择基数。

那看到这里我们就明白了,为什么要在基数高的字段上建立索引,而基数低的的字段建立索引反而没有全表扫描来的快。当然这个只是一方面,至于更深入的探讨就不在我这篇探讨的范围了。

概念二,关于HINT的使用。

这里我来说下HINT是什么,在什么时候用。

HINT简单来说就是在某些特定的场景下人工协助MySQL优化器的工作,使她生成最优的执行计划。一般来说,优化器的执行计划都是最优化的,不过在某些特定场景下,执行计划可能不是最优化。

比如:表t1经过大量的频繁更新 *** 作,(UPDATE,DELETE,INSERT),cardinality已经很不准确了,这时候刚好执行了一条SQL,那么有可能这条SQL的执行计划就不是最优的。为什么说有可能呢?

来看下具体演示

譬如,以下两条SQL,

A:

select from t1 where f1 = 20;

B:

select from t1 where f1 = 30;

如果f1的值刚好频繁更新的值为30,并且没有达到MySQL自动更新cardinality值的临界值或者说用户设置了手动更新又或者用户减少了sample page等等,那么对这两条语句来说,可能不准确的就是B了。

这里顺带说下,MySQL提供了自动更新和手动更新表cardinality值的方法,因篇幅有限,需要的可以查阅手册。

那回到正题上,MySQL 80 带来了几个HINT,我今天就举个index_merge的例子。

示例表结构:

mysql> desc t1;+------------+--------------+------+-----+---------+----------------+| Field      | Type         | Null | Key | Default | Extra          |+------------+--------------+------+-----+---------+----------------+| id         | int(11)      | NO   | PRI | NULL    | auto_increment || rank1      | int(11)      | YES  | MUL | NULL    |                || rank2      | int(11)      | YES  | MUL | NULL    |                || log_time   | datetime     | YES  | MUL | NULL    |                || prefix_uid | varchar(100) | YES  |     | NULL    |                || desc1      | text         | YES  |     | NULL    |                || rank3      | int(11)      | YES  | MUL | NULL    |                |+------------+--------------+------+-----+---------+----------------+7 rows in set (000 sec)

表记录数:

mysql> select count() from t1;+----------+| count() |+----------+|    32768 |+----------+1 row in set (001 sec)

这里我们两条经典的SQL:

SQL C:

select from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2;

SQL D:

select from t1 where rank1 =100  and rank2 =100  and rank3 =100;

表t1实际上在rank1,rank2,rank3三列上分别有一个二级索引。

那我们来看SQL C的查询计划。

显然,没有用到任何索引,扫描的行数为32034,cost为324365。

mysql> explain  format=json select from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\G 1 row EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "324365"    },    "table": {      "table_name": "t1",      "access_type": "ALL",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "rows_examined_per_scan": 32034,      "rows_produced_per_join": 115,      "filtered": "036",      "cost_info": {        "read_cost": "323207",        "eval_cost": "1158",        "prefix_cost": "324365",        "data_read_per_join": "49K"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt``t1``rank1` = 1) or (`ytt``t1``rank2` = 2) or (`ytt``t1``rank3` = 2))"    }  }}1 row in set, 1 warning (000 sec)

我们加上hint给相同的查询,再次看看查询计划。

这个时候用到了index_merge,union了三个列。扫描的行数为1103,cost为44109,明显比之前的快了好几倍。

mysql> explain  format=json select /+ index_merge(t1) / from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\G 1 row EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "44109"    },    "table": {      "table_name": "t1",      "access_type": "index_merge",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "union(idx_rank1,idx_rank2,idx_rank3)",      "key_length": "5,5,5",      "rows_examined_per_scan": 1103,      "rows_produced_per_join": 1103,      "filtered": "10000",      "cost_info": {        "read_cost": "33079",        "eval_cost": "11030",        "prefix_cost": "44109",        "data_read_per_join": "473K"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt``t1``rank1` = 1) or (`ytt``t1``rank2` = 2) or (`ytt``t1``rank3` = 2))"    }  }}1 row in set, 1 warning (000 sec)

我们再看下SQL D的计划:

不加HINT,

mysql> explain format=json select from t1 where rank1 =100 and rank2 =100 and rank3 =100\G 1 row EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "53434"    },    "table": {      "table_name": "t1",      "access_type": "ref",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "idx_rank1",      "used_key_parts": [        "rank1"      ],      "key_length": "5",      "ref": [        "const"      ],      "rows_examined_per_scan": 555,      "rows_produced_per_join": 0,      "filtered": "007",      "cost_info": {        "read_cost": "47884",        "eval_cost": "004",        "prefix_cost": "53434",        "data_read_per_join": "176"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt``t1``rank3` = 100) and (`ytt``t1``rank2` = 100))"    }  }}1 row in set, 1 warning (000 sec)

加了HINT,

mysql> explain format=json select /+ index_merge(t1)/ from t1 where rank1 =100 and rank2 =100 and rank3 =100\G 1 row EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "523"    },    "table": {      "table_name": "t1",      "access_type": "index_merge",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "intersect(idx_rank1,idx_rank2,idx_rank3)",      "key_length": "5,5,5",      "rows_examined_per_scan": 1,      "rows_produced_per_join": 1,      "filtered": "10000",      "cost_info": {        "read_cost": "513",        "eval_cost": "010",        "prefix_cost": "523",        "data_read_per_join": "440"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt``t1``rank3` = 100) and (`ytt``t1``rank2` = 100) and (`ytt``t1``rank1` = 100))"    }  }}1 row in set, 1 warning (000 sec)

对比下以上两个,加了HINT的比不加HINT的cost小了100倍。

总结下,就是说表的cardinality值影响这张的查询计划,如果这个值没有正常更新的话,就需要手工加HINT了。相信MySQL未来的版本会带来更多的HINT。

1.合理使用索引

索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。索引的使用要恰到好处,其使用原则如下:

●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。

●在频繁进行排序或分组(即进行group by或order by *** 作)的列上建立索引。

●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。

●如果待排序的列有多个,可以在这些列上建立复合索引(compound index)。

●使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁 *** 作而使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量数据后,删除并重建索引可以提高查询速度。

2.避免或简化排序

应当简化或避免对大型表进行重复的排序。当能够利用索引自动以适当的次序产生输出时,优化器就避免了排序的步骤。以下是一些影响因素:

●索引中不包括一个或几个待排序的列;

●group by或order by子句中列的次序与索引的次序不一样;

●排序的列来自不同的表。

为了避免不必要的排序,就要正确地增建索引,合理地合并数据库表(尽管有时可能影响表的规范化,但相对于效率的提高是值得的)。如果排序不可避免,那么应当试图简化它,如缩小排序的列的范围等。

3.消除对大型表行数据的顺序存取

在嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询10亿行数据。避免这种情况的主要方法就是对连接的列进行索引。例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。如果两个表要做连接,就要在“学号”这个连接字段上建立索引。

还可以使用并集来避免顺序存取。尽管在所有的检查列上都有索引,但某些形式的where子句强迫优化器使用顺序存取。下面的查询将强迫对orders表执行顺序 *** 作:

SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008

虽然在customer_num和order_num上建有索引,但是在上面的语句中优化器还是使用顺序存取路径扫描整个表。因为这个语句要检索的是分离的行的集合,所以应该改为如下语句:

SELECT * FROM orders WHERE customer_num=104 AND order_num>1001

UNION

SELECT * FROM orders WHERE order_num=1008

这样就能利用索引路径处理查询。

4.避免相关子查询

一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。

5.避免困难的正规表达式

MATCHES和LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _”

即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如果把语句改为SELECT * FROM customer WHERE zipcode >“98000”,在执行查询时就会利用索引来查询,显然会大大提高速度。

另外,还要避免非开始的子串。例如语句:SELECT * FROM customer WHERE zipcode[2,3]>“80”,在where子句中采用了非开始子串,因而这个语句也不会使用索引。

6.使用临时表加速查询

把表的一个子集进行排序并创建临时表,有时能加速查询。它有助于避免多重排序 *** 作,而且在其他方面还能简化优化器的工作。例如:

SELECT custname,rcvblesbalance,……other columns

FROM cust,rcvbles

WHERE custcustomer_id = rcvlbescustomer_id

AND rcvbllsbalance>0

AND custpostcode>“98000”

ORDER BY custname

如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个临时文件中,并按客户的名字进行排序:

SELECT custname,rcvblesbalance,……other columns

FROM cust,rcvbles

WHERE custcustomer_id = rcvlbescustomer_id

AND rcvbllsbalance>0

ORDER BY custname

INTO TEMP cust_with_balance

然后以下面的方式在临时表中查询:

SELECT * FROM cust_with_balance

WHERE postcode>“98000”

临时表中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘I/O,所以查询工作量可以得到大幅减少。

注意:临时表创建后不会反映主表的修改。在主表中数据频繁修改的情况下,注意不要丢失数据。

7.用排序来取代非顺序存取

非顺序磁盘存取是最慢的 *** 作,表现在磁盘存取臂的来回移动。SQL语句隐藏了这一情况,使得我们在写应用程序时很容易写出要求存取大量非顺序页的查询。

有些时候,用数据库的排序能力来替代非顺序的存取能改进查询。(由速拍学区房提供)

实际上 为了保证ORACLE数据库运行在最佳的性能状态下 在信息系统开发之前就应该考虑数据库的优化策略 优化策略一般包括服务器 *** 作系统参数调整 ORACLE数据库参数调整 网络性能调整 应用程序SQL语句分析及设计等几个方面 其中应用程序的分析与设计是在信息系统开发之前完成的

分析评价ORACLE数据库性能主要有数据库吞吐量 数据库用户响应时间两项指标 数据库吞吐量是指单位时间内数据库完成的SQL语句数目 数据库用户响应时间是指用户从提交SQL语句开始到获得结果的那一段时间 数据库用户响应时间又可以分为系统服务时间和用户等待时间两项 即

数据库用户响应时间=系统服务时间 + 用户等待时间

上述公式告诉我们 获得满意的用户响应时间有两个途径 一是减少系统服务时间 即提高数据库的吞吐量 二是减少用户等待时间 即减少用户访问同一数据库资源的冲突率

性能优化包括如下几个部分

ORACLE数据库性能优化之一 调整数据结构的设计

这一部分在开发信息系统之前完成 程序员需要考虑是否使用ORACLE数据库的分区功能 对于经常访问的数据库表是否需要建立索引等

ORACLE数据库性能优化之二 调整应用程序结构设计

这一部分也是在开发信息系统之前完成 程序员在这一步需要考虑应用程序使用什么样的体系结构 是使用传统的Client/Server两层体系结构 还是使用Browser/Web/Database的三层体系结构 不同的应用程序体系结构要求的数据库资源是不同的

ORACLE数据库性能优化之三 调整数据库SQL语句

应用程序的执行最终将归结为数据库中的SQL语句执行 因此SQL语句的执行效率最终决定了ORACLE数据库的性能 ORACLE公司推荐使用ORACLE语句优化器(Oracle Optimizer)和行锁管理器(row level manager)来调整优化SQL语句

ORACLE数据库性能优化之四 调整服务器内存分配

内存分配是在信息系统运行过程中优化配置的 数据库管理员可以根据数据库运行状况调整数据库系统全局区(SGA区)的数据缓冲区 日志缓冲区和共享池的大小 还可以调整程序全局区(PGA区)的大小 需要注意的是 SGA区不是越大越好 SGA区过大会占用 *** 作系统使用的内存而引起虚拟内存的页面交换 这样反而会降低系统

ORACLE数据库性能优化之五 调整硬盘I/O 这一步是在信息系统开发之前完成的

数据库管理员可以将组成同一个表空间的数据文件放在不同的硬盘上 做到硬盘之间I/O负载均衡

ORACLE数据库性能优化之六 调整 *** 作系统参数

例如 运行在UNIX *** 作系统上的ORACLE数据库 可以调整UNIX数据缓冲池的大小 每个进程所能使用的内存大小等参数

lishixinzhi/Article/program/Oracle/201311/17687

你最好买一本专门讲ORACLE性能优化的书,好好看看\x0d\1、调整数据库服务器的性能\x0d\Oracle数据库服务器是整个系统的核心,它的性能高低直接影响整个系统的性能,为了调整Oracle数据库服务器的性能,主要从以下几个方面考虑: \x0d\11、调整 *** 作系统以适合Oracle数据库服务器运行\x0d\Oracle数据库服务器很大程度上依赖于运行服务器的 *** 作系统,如果 *** 作系统不能提供最好性能,那么无论如何调整,Oracle数据库服务器也无法发挥其应有的性能。 \x0d\111、为Oracle数据库服务器规划系统资源 \x0d\据已有计算机可用资源, 规划分配给Oracle服务器资源原则是:尽可能使Oracle服务器使用资源最大化,特别在Client/Server中尽量让服务器上所有资源都来运行Oracle服务。 \x0d\112、调整计算机系统中的内存配置 \x0d\多数 *** 作系统都用虚存来模拟计算机上更大的内存,它实际上是硬盘上的一定的磁盘空间。当实际的内存空间不能满足应用软件的要求时, *** 作系统就将用这部分的磁盘空间对内存中的信息进行页面替换,这将引起大量的磁盘I/O *** 作,使整个服务器的性能下降。为了避免过多地使用虚存,应加大计算机的内存。 \x0d\113、为Oracle数据库服务器设置 *** 作系统进程优先级 \x0d\不要在 *** 作系统中调整Oracle进程的优先级,因为在Oracle数据库系统中,所有的后台和前台数据库服务器进程执行的是同等重要的工作,需要同等的优先级。所以在安装时,让所有的数据库服务器进程都使用缺省的优先级运行。 \x0d\12、调整内存分配\x0d\Oracle数据库服务器保留3个基本的内存高速缓存,分别对应3种不同类型的数据:库高速缓存,字典高速缓存和缓冲区高速缓存。库高速缓存和字典高速缓存一起构成共享池,共享池再加上缓冲区高速缓存便构成了系统全程区(SGA)。SGA是对数据库数据进行快速访问的一个系统全程区,若SGA本身需要频繁地进行释放、分配,则不能达到快速访问数据的目的,因此应把SGA放在主存中,不要放在虚拟内存中。内存的调整主要是指调整组成SGA的内存结构的大小来提高系统性能,由于Oracle数据库服务器的内存结构需求与应用密切相关,所以内存结构的调整应在磁盘I/O调整之前进行。 \x0d\121、库缓冲区的调整 \x0d\库缓冲区中包含私用和共享SQL和PL/SQL区,通过比较库缓冲区的命中率决定它的大小。要调整库缓冲区,必须首先了解该库缓冲区的活动情况,库缓冲区的活动统计信息保留在动态性能表v$librarycache数据字典中,可通过查询该表来了解其活动情况,以决定如何调整。 \x0d\ \x0d\Select sum(pins),sum(reloads) from v$librarycache; \x0d\ \x0d\Pins列给出SQL语句,PL/SQL块及被访问对象定义的总次数;Reloads列给出SQL 和PL/SQL块的隐式分析或对象定义重装载时在库程序缓冲区中发生的错误。如果sum(pins)/sum(reloads) ≈0,则库缓冲区的命中率合适;若sum(pins)/sum(reloads)>1, 则需调整初始化参数 shared_pool_size来重新调整分配给共享池的内存量。 \x0d\122、数据字典缓冲区的调整 \x0d\数据字典缓冲区包含了有关数据库的结构、用户、实体信息。数据字典的命中率,对系统性能影响极大。数据字典缓冲区的使用情况记录在动态性能表v$librarycache中,可通过查询该表来了解其活动情况,以决定如何调整。 \x0d\ \x0d\Select sum(gets),sum(getmisses) from v$rowcache; \x0d\ \x0d\Gets列是对相应项请求次数的统计;Getmisses 列是引起缓冲区出错的数据的请求次数。对于频繁访问的数据字典缓冲区,sum(getmisses)/sum(gets)回答于 2022-11-15

在mysql安装目录下,比如:D:ProgramFilesMySQLMySQLServer51

里面有几个配置文件,只要修改名字成为myini即可,比如:

my-hugeini巨型服务器

my-largeini大型

my-mediumini中型

my-smallini小型

备份原来的,并重命名,重新启动即可。其中,[mysqld]这一节是mysql服务器的配置信息。

以上就是关于如何对数据库性能进行优化全部的内容,包括:如何对数据库性能进行优化、数据库性能优化有哪些措施、数据库访问量很大时,如何做优化等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10103874.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-05
下一篇 2023-05-05

发表评论

登录后才能评论

评论列表(0条)

保存