GIS基本概念集锦
1、地理信息系统(Geographic Information System ,即GIS )——一门集计算机科学、信息学、地理学等多门科学为一体的新兴学科,它是在计算机软件和硬件支持下,运用系统工程和信息科学的理论,科学管理和综合分析具有空间内涵的地理数据,以提供对规划、管理、决策和研究所需信息的空间信息系统。GIS有以下子系统:数据输入子系统,数据存储和检索子系统,数据 *** 作和分析子系统,报告子系统
信息系统
非空间的 空间的
管理信息系统 非地理学的 GIS
CAD/CAM 其他GIS LIS
社会经济,人口普查 基于非地块,基于地块的
2、比较GIS与CAD、CAC间的异同。
CAD——计算机辅助设计,规则图形的生成、编辑与显示系统,与外部描述数据无关。
CAC——计算机辅助制图,适合地图制图的专用软件,缺乏空间分析能力。
GIS——地理信息系统,集规则图形与地图制图于一身,且有较强的空间分析能力。
3、图层:将空间信息按其几何特征及属性划分成的专题。
4、地理数据采集——实地调查、采样;传统的测量方法,如三角测量法、三边测量法;全球定位系统(GPS);现代遥感技术;生物遥测学;数字摄影技术;人口普查。
5、信息范例——传统的制图方法,称为信息范例,即假定地图本身是一个最终产品,通过使用符号、分类限制的选择等方式交换空间信息的模式。这个范例是传统的透视图方法,由于原始而受到很多限制,地图用户不能轻易获得预分类数据。也就是说,用户只限于处理最终产品,而无法将数据重组为更有效的形式以适应环境或需求的变化。
6、分析范例(整体范例)——存储保存原始数据的属性数据,可根据用户的需求进行数据的显示、重组和分类。整体范例是一种真正的用于制图学和地理学的整体方法。
7、栅格——栅格结构是最简单最直接的空间数据结构,是指将地球表面划分为大小均匀紧密相邻的网格阵列,每个网格作为一个象元或象素由行、列定义,并包含一个代码表示该象素的属性类型或量值,或仅仅包括指向其属性记录的指针。因此,栅格结构是以规则的阵列来表示空间地物或现象分布的数据组织,组织中的每个数据表示地物或现象的非几何属性特征。特点:属性明显,定位隐含,即数据直接记录属性本身,而所在的位置则根据行列号转换为相应的坐标,即定位是根据数据在数据集中的位置得到的,在栅格结构中,点用一个栅格单元表示;线状地物用沿线走向的一组相邻栅格单元表示,每个栅格单元最多只有两个相邻单元在线上;面或区域用记有区域属性的相邻栅格单元的集合表示,每个栅格单元可有多于两个的相邻单元同属一个区域。
8、矢量——它假定地理空间是连续,通过记录坐标的方式尽可能精确地表示点、线、多边形等地理实体,坐标空间设为连续,允许任意位置、长度和面积的精确定义。对于点实体,矢量结构中只记录其在特定坐标系下的坐标和属性代码;对于线实体,用一系列坐标对的连线表示;多边形是指边界完全闭合的空间区域,用一系列坐标对的连线表示。
9、“拓扑”(Topology)一词来源于希腊文,它的原意是“形状的研究”。拓扑学是几何学的一个分支,它研究在拓扑变换下能够保持不变的几何属性——拓扑属性(拓扑属性:一个点在一个弧段的端点,一个点在一个区域的边界上;非拓扑属性:两点之间的距离,弧段的长度,区域的周长、面积)。这种结构应包括:唯一标识,多边形标识,外包多边形指针,邻接多边形指针,边界链接,范围(最大和最小x、y坐标值)。地理空间研究中三个重要的拓扑概念(1)连接性:弧段在结点处的相互联接关系;(2)多边形区域定义:多个弧段首尾相连构成了多边形的内部区域;(3)邻接性:通过定义弧段的左右边及其方向性来判断弧段左右多边形的邻接性。
10、矢量的实体错误——伪节点:即需要假节点进行识别的节点,发生在线和自身相连接的地方(如岛状伪结点——显示存在一个岛状多边形,这个多边形处于另一个更大的多边形内部),或发生在两条线沿着平行路径而不是交叉路径相交的地方(节点——表示线与线间连接的特殊点)。摇摆结点:有时称为摇摆,来源于3种可能的错误类型:闭合失败的多边形;欠头线,即结点延伸程度不够,未与应当连接的目标相连;过头线,结点的线超出想与之连接的实体。碎多边形:起因于沿共同边界线进行的不良数字化过程,在边界线位置,线一定是不只一次地被数字化。高度不规则的国家边境线,例如中美洲,特别容易出现这样的数字变形。标注错误:丢失标注和重复标注。异常多边形:具有丢失节点的多边形。丢失的弧。
11、空间分析方法——1、空间信息的测量:线与多边形的测量、距离测量、形状测量;2、空间信息分类:范围分级分类、邻域功能、漫游窗口、缓冲区;3、叠加分析:多边形叠加、点与多边形、线与多边形;4、网络分析:路径分析、地址匹配、资源匹配; 5、空间统计分析:插值、趋势分析、结构分析;6、表面分析:坡度分析、坡向分析、可见度和相互可见度分析。
12、欧拉数——最通常的空间完整性,即空洞区域内空洞数量的度量,测量法称为欧拉函数,它只用一个单一的数描述这些函数,称为欧拉数。数量上,欧拉数=(空洞数)-(碎片数-1),这里空洞数是外部多边形自身包含的多边形空洞数量,碎片数是碎片区域内多边形的数量。有时欧拉数是不确定的。
13、函数距离——描述两点间距离的一种函数关系,如时间、摩擦、消耗等,将这些用于距离测量的方法集中起来,称为函数距离。
14、曼哈顿距离——两点在南北方向上的距离加上在东西方向上的距离,即D(I,J)=|XI-XJ|+|YI-YJ|。对于一个具有正南正北、正东正西方向规则布局的城镇街道,从一点到达另一点的距离正是在南北方向上旅行的距离加上在东西方向上旅行的距离因此曼哈顿距离又称为出租车距离,曼哈顿距离不是距离不变量,当坐标轴变动时,点间的距离就会不同。
15、邻域功能——所谓邻域是指具有统一属性的实体区域或者焦点集中在整个地区的较小部分实体空间。邻域功能就是在特定的实体空间中发现其属性的一致性。它包括直接邻域和扩展邻域。
16、缓冲区分析——是指根据数据库的点、线、面实体基础,自动建立其周围一定宽度范围内的缓冲区多边形实体,从而实现空间数据在水平方向得以扩展的空间分析方法。缓冲区在某种程度上受控于目前存在的摩擦表面、地形、障碍物等,也就是说,尽管缓冲区建立在位置的基础上,但是还有其他实质性的成分。确定缓冲区距离的四种基本方法:随机缓冲区、成因缓冲区、可测量缓冲区、合法授权缓冲区。
17、统计表面——表面是含有Z值的形貌,Z值又称为高度值,它的位置被一系列X和Y坐标对定义且在区域范围内分布。Z值也常被认为是高程值,但是不必局限于这一种度量。实际上,在可定义的区域内出现的任意可测量的数值(例如,序数、间隔和比率数据)都可以认为组成了表面。一般使用的术语是统计表面,因为在考虑的范围内Z值构成了许多要素的统计学的表述(Robinson et al, 1995)。
18、DEM——数字高程模型(Digital Elevation Model)。地形模型不仅包含高程属性,还包含其它的地表形态属性,如坡度、坡向等。DEM通常用地表规则网格单元构成的高程矩阵表示,广义的DEM还包括等高线、三角网等所有表达地面高程的数字表示。在地理信息系统中,DEM是建立数字地形模型(Digital Terrain Model)的基础数据,其它的地形要素可由DEM直接或间接导出,称为“派生数据”,如坡度、坡向。
19、空间插值——空间插值常用于将离散点的测量数据转换为连续的数据曲面,以便与其它空间现象的分布模式进行比较,它包括了空间内插和外推两种算法。空间内插算法:通过已知点的数据推求同一区域未知点数据。空间外推算法:通过已知区域的数据,推求其它区域数据。20、泰森多边形——通过数学方法定义、平分点间的空间并以直线相连结,在点状物体间生成多边形的方法。
21、线密度——用所有区域内的线的总长度除以区域的面积。
22、连通性——连通性是衡量网络复杂性的量度,常用γ指数和α指数计算它。其中,γ指数等于给定空间网络体节点连线数与可能存在的所有连线数之比;α指数用于衡量环路,节点被交替路径连接的程度称为α指数,等于当前存在的环路数与可能存在的最大环路数之比。
23、图形叠加——将一个被选主题的图形所表示的专题信息放在另一个被选主题的图形所表示的专题信息之上。
24、栅格自动叠加——基于网格单元的多边形叠加是一个简单的过程,因为区域是由网格单元组成的不规则的块,它共享相同的一套数值和相关的标注。毫无疑问,网格单元为基础的多边形叠加缺乏空间准确性,因为网格单元很大,但是类似于简单的点与多边形和线与多边形叠加的相同部分,由于它的简单性,因此可以获得较高的灵活程度和处理速度。
25、拓扑矢量叠加——如何决定实体间功能上的关系,如定义由特殊线相连的左右多边形,定义线段间的关系去检查交通流量,或依据个别实体或相关属性搜索已选择实体。它也为叠加多个多边形图层建立了一种方法,从而确保连结着每个实体的属性能够被考虑,并且因此使多个属性相结合的合成多边形能够被支持。这种拓扑结果称作最小公共地理单元(LCGU)。
26、矢量多边形叠加——点与多边形和线与多边形叠加使用的主要问题是,线并不总是出现在整个区域内。解决该问题的最强有力的办法是让软件测定每组线的交叉点,这就是所谓的结点。进行矢量多边形的叠加,其任务是基本相同的,除了必须计算重叠交叉点外,还要定义与之相联系的多边形线的属性。
27、布尔叠加——一种以布尔代数为基础的叠加 *** 作。
28、制图建模——用以指明应用命令组合来回答有关空间现象问题的处理。制图模型是针对原始数据也包括导出数据和中间地图数据进行一系列交互有序的地图 *** 作来模拟空间决策的处理。
29、地理模型的类型——类似统计同类的描述性模型和与推理统计技术相关的规则性模型。
30、常见模型——1、注重样式与处理的问题长时间以来用于解释类似农业活动与运输成本间的关系——独立状态模型。2、最初为预测工业位置点的空间分布的样式而设计的WEBER模型,进行改进后可使参与者寻找最佳商业和服务位置——位置-分配模型。3、建立在吸引力与到潜在市场的距离呈反比这一基础上的经济地理模型——重力模型。4、通过空间验证思想如今广泛用于生态群落,通过地理空间跟踪动植物运动——改进扩散模型。
31、专题地图——以表现某单一属性的位置或若干选定属性之间关系为主要目的的地图。专题图形设计的一般程序包括合适的符号和图形对象的选择、生成和放置,以明确突出研究主题的重要属性和空间关系,同时还要考虑参考系统。GIS专题地图输出的规则:不但要有精美的图形,最重要的是去读图、分析地图和理解地图。
32、元数据——关于数据的数据,对数据库内容的全面描述,其目的是促进数据集的高效利用和充分共享。使用元数据的理由:性能上,完整性、可扩展性、特殊性、安全性;功能上,差错功能、浏览功能、程序生成。
33、聚合——将单个数据元素进行分类的大量数字处理过程。
34、克立金法——依靠地球自然表面随距离的变化概率而确定高程的一种精确内插方法。
35、四叉树——一种压缩数据结构,它把地理空间定量划分为可变大小的网格,每个网格具有相同性质的属性。
36、比较工具型地理信息系统和应用型地理信息系统的异同。
工具型地理信息系统:是一种通用型GIS,具有一般的功能和特点,向用户提供一个统一的 *** 作平台。一般没有地理空间实体,而是由用户自己定义。具有很好的二次开发功能。如:ArcInfo、Genamap、MapInfo、MapGIS、GeoStar。
应用型地理信息系统:在较成熟的工具型GIS软件基础上,根据用户的需求和应用目的而设计的用于解决一类或多类实际问题的地理信息系统,它具有地理空间实体和解决特殊地理空间分布的模型。如LIS、CGIS、UGIS。
37、详细描述应用型地理信息系统的开发过程
1、 系统总体设计:需求和可行性分析、数据模型设计、数据库设计、方法设计
2、 系统软件设计:开发语言、用户界面、流程、交互
3、 程序代码编写:投影、数据库、输入、编辑
4、 系统的调试与运行:α调试、β调试
5、 系统的评价与维护:功能评价、费用评价、效益评价
38、空间信息系统:以多媒体技术为依托,以空间数据为基础,以虚拟现实为手段的集空间数据的输入、编辑、存储、分析和显示于一体的巨系统,体由若干个子系统组成。
39、地理数据测量标准——命名(对数据命名,允许我们对把对象叫什么做出声明,但不允许对两个命名的对象进行直接比较)、序数(提供对空间对象进行逻辑对比的结果,但这种对比仅限于所谈论问题的范围内)、间隔(可以对待测项逐个赋值,能够更为精确地估计对比物的不同点)、比率(用途最广的测量数据标准,它是允许直接比较空间变量的惟一标准)。
40、根据样本进行推理的取样原则——未取样位置的数据可以从已取样位置的数据中推测出来;区域边界内的数据可以合并计算;一组空间单元中的数据能够转换成具有不同空间配置的另外一组空间单元数据。常用的方法:内插法:当有数值边界或知道缺失部分两端数值;外推法:当缺失的数据一侧有数值,而另一侧每一数值。
地理信息系统(Geographic Information System,简称GIS)是20世纪60年代以来随着电子计算机技术的发展及其广泛应用,在地理学中发展起来的一种新的工作手段和方法。该学科是介于信息科学、空间科学和地球科学之间的交叉学科,它是计算机科学、遥感技术、信息工程和现代化地理学理论与方法的有机结合,是它们应用的进一步延伸和发展,是地理学的又一新进展。
一、地理信息与地理信息系统
地理信息是指表征地理系统诸要素的数量、质量、分布特征、相互联系和变化规律的数字、文字、图像和图形等的总称。从地理数据到地理信息的发展,是人类认识地理事物的一次飞跃。地球表面的岩石圈、水圈、大气圈和人类活动等是最大的地理信息源。地理科学的一个重要任务就是迅速地采集到地理空间的几何信息、物理信息和人为信息,并适时地识别、转换、存储、传输、再生成、显示、控制和应用这些信息。
地理信息属于空间信息,其位置的识别是与数据联系在一起的,这是地理信息区别于其他类型信息的最显著的标志。地理信息的这种定位特征,是通过经纬网或公路网建立的地理坐标来实现空间位置的识别;地理信息还具有多维结构的特征,即在二维空间的基础上实现多专题的第三维结构,而各个专题型实体型之间的联系是通过属性码进行的,这就为地理系统各圈层之间的综合研究提供了可能,也为地理系统多层次的分析和信息的传输与筛选提供了方便。地理信息的时序特征十分明显,因此可以按照时间尺度将地理信息划分为超短期的(如台风、地震)、短期的(如江河洪水、秋季低温)、中期的(如土地利用、作物估产)、长期的(如城市化、水土流失)、超长期的(如地壳变动、气候变化)等。地理信息的这种动态变化的特征,一方面要求地理信息的获取要及时,并定期更新;另一方面要从其自然的变化过程中研究其变化规律,从而作出地理事物的预测与预报,为科学决策提供依据。认识地理信息的这种区域性、多层次性和动态性变化的特征对建立地理信息系统,实现人口、资源、环境等的综合具有重要意义。
地理信息系统是以地理空间数据库为基础,在计算机软硬件的支持下,对空间相关数据进行采集、管理、 *** 作、分析、模拟和显示,并采用地理模型分析方法,适时提供多种空间和动态的地理信息,为地理研究和地理决策服务而建立起来的计算机技术系统。因此,地理信息系统具有以下三个方面的特征:
(1)具有采集、管理、分析和输出多种地理空间信息的能力。
(2)以地理研究和地理决策为目的,以地理模型方法为手段,具有空间分析、多要素综合分析和动态预测的能力,并能产生高层次的地理信息。
(3)由计算机系统支持进行空间地理数据管理,并由计算机程序模拟常规的或专门的地理分析方法,作用于空间数据,产生有用信息,完成人类难以完成的任务;计算机系统的支持是GlS的重要特征,它能使GIS得到快速、精确、综合地对复杂的地理系统进行空间定位和动态分析。
二、GIS的组成部分
地理信息系统是一种计算机技术系统,它由信息输入、存储、数据的分析处理和信息的输出等基本部分组成,并在计算机软、硬件支持下运行工作。各种组成在GIS中所起的作用不同,可以分为五个组成部分:
(1)计算机硬件:指GIS所需要的基本设备。这些设备用来存储、处理和显示。对象主要是数字地图或数字图像数据。
(2)计算机软件:包括机器运行所需的各种程序及有关资料,如 *** 作系统、编译程序、汇编程序、专用程序、GIS数据库管理系统、各种分析程序及使用分册、说明等。主要作用是完成各种GIS应有的 *** 作。
(3)数据:GIS研究所需要的各种地理空间数据,包括数字化了的地图数据、经过数字转换的图像数据、分析用的统计数据等等。
(4)过程:GIS工作时,为了得到问题的解答而执行的一步一步的动作。不少系统在执行时,为了方便用户使用目录选择方式,又称作点“菜单”方式,作哪个动作就点哪项;也有的系统使用命令方式,根据用户需要打入命令,由系统完成,可以一个命令做一个动作,也可以一个命令完成一系列动作,也就是命令过程。
(5)专家:了解GIS,知道怎样使用系统,这是最重要的。有些系统不能被人完全了解,因而不能发挥出全部作用,更不能进一步发展系统。创造GIS的工作量很大,常以“人年”作为计量工作的单位。
三、GIS的类型
(1)专题地理信息系统:是具有有限目标和专业特点的地理信息系统。为特定的专门的目的服务,如水资源管理信息系统、矿产资源信息系统、农作物估产信息系统、草场资源管理信息系统、水土流失信息系统、环境管理信息系统等。
(2)区域地理信息系统:主要以区域综合研究和全面信息服务为目标。可以有不同规模,如国家级的、地区或省级的、市级或县级等为各不同级别行政区服务的区域信息系统,也可以按自然分区或流域为单位建立区域信息系统。区域信息系统如加拿大国家信息系统、美国橡树岭地区信息系统、圣地亚哥县信息系统、中国黄河流域信息系统等。
(3)地理信息系统工具:它是一组具有图形图像数字化、存储管理、查询检索、分析运算和多种输出等地理信息系统基本功能的软件包。它们或者是专门研究的,或者是在完成实用地理信息系统后抽去具体的区域或专题的地理空间数据后得到的。这些软件适于用来作为地理信息系统支撑软件,以建立专题或区域性的实用性地理信息系统,也可以作教学软件。由于地理信息系统设计技术较高,而且重复编辑比较复杂的基础软件也造成人力的极大浪费,因此采用地理信息系统工具,无疑是建立实用地理信息系统的一条捷径。
四、资源与环境研究中的GIS
进入21世纪,中国的GIS事业发展迅速,GIS的作用日益被大众所认识,并蓬勃应用到各种领域中。人类正在进入以信息技术和空间技术应用为特征的新型信息时代。作为新兴技术科学的地理信息系统,从20世纪80年代末期以来已成为最活跃的信息产业之一。它涉及到GIS软件、硬件、数据、遥感与航空摄影、制图、野外数据采集、数据交换、系统集成和咨询等内容。其中,软件是GIS的技术核心,而从事软件开发和系统集成的公司或机构则往往成为GIS产业的主体。
早期GIS主要应用于自动制图、设施管理和土地信息系统(LIS),后来逐步扩展到资源与环境管理、森林清查、城市规划、市政管理、灾害监测与预测、科学研究和军事战略等众多领域。随着GIS技术的成熟,数据积累和应用环境的改善,它的应用范围不断扩展,应用程度不断深化。GIS在资源与环境研究中的应用主要表现在以下几个方面:
1资源清查与管理
资源的清查、管理和分析是GIS应用中趋于成熟而重要的领域,包括土地资源、森林资源和矿产资源的清查、管理,土地利用规划,野生动植物的保护等。资源清查是地理信息系统最基本的职能,这时系统的主要任务是将各种来源的数据汇集在一起,并通过系统的统计和覆盖分析功能,按多种边界和属性条件,提供区域多种条件组合形式的资源统计和资源状况分析,为资源的合理开发、利用和科学管理提供依据。
以土地利用类型为例,可以输出不同土地类型的分布和面积,按不同高程带划分的土地利用类型、不同坡度区内的土地利用现状、不同岩性引起的土地利用差异以及不同时期的土地利用变化等,为资源的合理利用、开发和科学管理提供依据。又如中国西南地区国土资源信息系统,设置了三个功能子系统,即数据库系统、辅助决策系统、图形系统。资源数据存储了1500多项300多万个。该系统提供了一系列资源分析与评价模型、资源预测预报及西南地区资源合理开发配置的资料。可绘制草场资源分布图、矿产资源分布图、各地县产值统计图、农作物产量统计图、交通规划图、重大项目规划图等不同内容的专业图件。
2区域与城镇规划
城市与区域规划中要处理许多不同性质和不同特点的问题,它涉及资源、环境、人口、交通、经济、教育、文化和金融等多个地理变量和大量数据。地理信息系统的数据库管理有利于将这些数据信息归并到统一系统中,最后进行城市与区域多目标的开发和规划,包括城镇总体规划、城市建设用地适宜性评价、环境质量评价、道路交通规划、公共设施配置以及城市环境动态监测等。这些规划功能的实现,是以地理信息系统的空间搜索方法、多元信息的叠加处理、空间分析方法和网络分析功能等作为保证的。中国大、中型城市很多,根据加快中心城市的规划建设,加强城市建设决策科学化、现代化的要求,利用地理信息系统作为城市规划、管理和分析的工具,具有十分重要的意义。
3环境灾害监测
利用GIS方法和多时相遥感数据,可以有效地用于森林火灾的预测预报、洪水灾情监测和灾情损失的估算,为救灾抢险和防洪决策提供及时准确的信息,例如据中国大兴安岭地区的研究,通过普查分析森林火灾实况,统计分析十几万个气象数据,从中筛选出气温、风速、降水、温度等气象要素、春秋两季植被生长情况和积雪覆盖程度等14个因子,用模糊数学方法建立数学模型,建立微机信息系统的多因子的综合指标森林火险预报方法,对预报火险等级的准确率可达73%以上。又如黄河三角洲地区防洪减灾信息系统,在ARC/INFO地理信息系统软件支持下,借助于大比例尺数字高程模型,加上各种专题地图,如土地利用、水系、居民点、油井、工厂排放工程设施及社会经济统计信息等,通过各种图形叠加、 *** 作、分析等功能,可以计算出若干个泄洪区域及其面积,比较不同泄洪区域内的土地利用、房屋、财产损失等,最后得出最佳的泄洪区域,并制定整个泄洪区域内的人员撤退、财产转移和救灾物资供应等的最佳运输线路。
4环境保护及管理
GIS技术也是进行环境评价、环境规划管理的有力工具。其内容包括:环境监测和数据收集,建立基础数据库和环境动态数据库,建立环境污染的有关模型,提供环境管理的统计数据和报表输出,环境作用分析和环境质量评价,环境信息传输和制图等。
环境管理涉及人类社会活动和经济活动的一切领域,一个大中型城市每年收集和监测的环境数据可能多达100万个,对如此大量的数据,应使其有效地为环境管理决策及其他用途服务。一个地方环境管理信息系统的功能有:为环境管理部门提供数据和信息系统存储方法——基础数据库系统;提供环境管理的数据统计、报表和图形编辑方法;建立环境污染的若干模型,为环境管理决策提供支持;提供环保部门办公软件;提供信息传输的方法和手段。
例如,上海市环境管理雅息系统具有如下主要特征:①建立了动态数据库,可存储环境监测数据(如包括污染源和环境质量)和其他有关数据(如环境标准、水文、气象等),对大多数环境管理功能来说,实现了数据共享;②面向环境质量管理,可以对环境质量状况的统计、评价、预测、规划以及其他管理提供支持;③为实现面向污染源的污染控制管理提供支持,可以实现排污收费、排污许可证制度的管理;④为便于用户使用,系统设计一个界面友好的窗口菜单系统,使用方便,可以提供不同形式的输出,包括屏幕显示、表格打印、图形绘制、磁盘输出等,还预留了远程通讯接口。
5宏观决策
GIS利用有效的数据库,通过一系列决策模型的构建和比较分析,可为国家或区域的宏观决策提供科学依据。例如GIS支持下的土地承载力的研究,可以解决土地资源与人口容量的规划。中国在三峡地区研究中,通过利用地理信息系统和机助制图的方法等多种功能建立了环境监测系统,为三峡宏观决策提供了建库前后环境变化的数量、速度和演变趋势等可靠依据。又如,通过水土流失监测系统数据库中的水土流失强度、地质岩性、坡度及其他资源与环境的相关数据进行分析研究,利用图形叠置等功能和变化的规律模型,可以进行水土流失的预测,为水土保持方案的编制及实施生态环境治理等提供坚实的数据基础,为宏观决策提供依据。
(一)问题的提出
塔里木河流域生态环境动态监测系统的运转需要大量的空间数据支持。在空间数据库构建前期,采集了塔里木河流域的各尺度基础地形图、生态环境专题图以及遥感影像资料等图形、图像数据,这些数据都是以分幅的成果进行收集和提交的,需要进入综合数据库中,以实现数据的共享。
我国国土版图大,而且大部分位于中、低纬度地区,因此我国现行的大于1∶50万比例尺的各种地形图都采用高斯-克里格投影即横切椭圆柱正形投影。经过高斯-克里格投影后的平面直角坐标系是以相切的经线(中央经线)的投影为X轴,以赤道的投影为Y轴。高斯-克里格投影具有以下特点:
(1)中央经线投影为直线,而且是投影的对称轴(也是投影平面的X轴);
(2)高斯-克里格投影是等角投影,投影后具有角度不变、伸长固定的特点(即同一地点各个方向的长度比不变),满足等角的要求;
(3)中央经线上长度没有变形,离中央经线越远变形越大。为了限制投影变形,必须进行分带投影。所谓分带就是按照一定的经度差,将椭球体按经线划分成若干个狭窄的区域,各个区域分别按高斯投影的规律进行投影,每一个区域就称为一个投影带。在每一个投影带内,位于各带中央的子午线就是轴子午线,各带相邻的子午线叫边缘子午线。分带之后,各带均有自己的坐标轴和原点,形成各自独立但又相同的坐标系统。根据国际通用方法,我国投影分带主要有两种:在我国1∶25万到1∶50万地形图均采用6°分带投影,1∶1万及更大比例尺的地形图采用3°分带投影,以保证投影变形误差满足地图的精度要求(王密等,2001)。
本系统所采集到的数据产品的空间参考大都是以高斯投影后的平面坐标为基础的分幅数据。塔里木河流域地域广阔,地理坐标介于东经73°10'~94°05',北纬34°55'~43°08'之间,以1∶10万基础地形图数据为例,按照高斯投影后的坐标分成了13°、14°、15°、16°四个6°高斯投影带,每个带的坐标都是以本带的坐标原点为参考点,空间基准不统一,如果将这些数据直接进行入库,将在跨带处产生缝隙,不能形成逻辑意义上完整的河流表现,也无法完成基于整个流域的生态环境分析,因此,必须采用相应的数据处理与建库技术,实现塔河整个流域数据的无缝集成管理,使之形成统一的整体。从基础数据的获取开始,进行精心设计和组织,分离出数据物理层和数据逻辑层,在统一的空间框架之下,将物理层归化到逻辑层,以消除逻辑层的缝隙,从而实现用户级的逻辑无缝空间数据库。
(二)无缝数据库
随着GIS数据发布与共享技术的发展,无缝空间数据库逐渐分化出两个层次的含义:一是GIS系统内部的数据无缝,一是不同GIS实现互 *** 作时的数据无缝。前者是通常意义的无缝,后者主要通过数据标准化与 *** 作标准化来实现。无缝空间数据库的最终含义体现在逻辑无缝数据库。无论是多源还是单源、同构还是异构,跨越数据层呈现在用户面前的GIS空间数据库必须是逻辑无缝的。
空间数据的无缝连接是一个建立在用户与数据库接口基础上的概念,意味着GIS管理的数据不再是单一、被硬性割裂的图幅,而是范围更加广阔的区域,这个区域小可到一个城市,大可到一个国家甚至整个地球(王卉、王家耀,2004)。由于硬软件条件的限制,计算机系统尚不能同时处理海量的空间数据,因此从具体技术的实施上,可采用将空间数据分块存储于数据库中,数据库提供相应的图块拼接信息。物理上空间数据是有缝隙的,但空间数据库提供图块之间的接图信息及相应的拼接访问手段,保障了空间数据在使用上的空间连贯性,即数据在逻辑使用上是无缝的(王密等,2001)。
(三)缝隙产生原因
在现实世界中,地理空间是由地貌、地物组成的连续的表层空间,地理信息则是有关地理空间的一切有用的知识。在计算机世界中,地理信息通过抽象、建模形成数字化的表示形式,通过空间数据库来进行表达、存储和管理(朱欣焰等,2002)。空间地理数据缝隙是在数据的获取、表示与处理过程中产生的数据不连续现象。
1数据源
由于历史和现实的原因,地图是绝大多数GIS系统直接的数据源。地图是地球三维椭球面的二维平面表达,本身对真实世界有扭曲;地图是对连续空间的割裂表达,实体被分割到不同的地图空间中去;高斯投影是基本比例尺地形图经常选用的投影,也是绝大多数GIS系统的数学基础,由于分带的原因,使得投影后带有高斯投影平面坐标的地图无法实现无缝拼接。
2数据表达与组织方式
空间地理几何数据的表示主要有栅格和矢量两种不同的形式。栅格形式是将地理表层空间划分为一系列网格,空间目标由这些网格的位置及其量化值来表示,这些网格本身就是连续空间信息的离散表达。矢量形式则是将地理空间的一切事物、概念进行抽象,形成点、线、面,由点、线、面来组成各类空间目标。按点、线、面来分类和按分层的思想来组织空间数据,也割裂了实体之间内在的联系。
在空间数据库组织与管理上,目前主要有文件型、文件与关系数据库混合型、全关系型以及对象关系型。传统的文件型空间数据库、文件与关系混合型空间数据库,按图幅或一定的区域范围以文件的形式来组织与存储空间几何数据,不同的图幅或区域之间存在缝隙。在文件与关系数据库混合型的空间数据库中,空间几何数据贮存在文件中,属性数据贮存在关系数据库中,属性数据和几何数据之间通过内部标识来链接,空间几何数据和属性数据之间存在缝隙。
3数据处理
数据处理的过程中也会引入缝隙,产生这种缝隙的原因有:①数据处理过程的顺序不一致;②选择的处理参数不一致;③数字化的精度不一致。
4多源异构数据共享
数据属性(数学基础、比例尺、用途、时间、精度等)的不同,导致了数据的差异,这些差异是多层次和多方面的,它们集中体现了数据的异构。数据异构和多源往往是一体的,多源异构是系统内部和系统之间数据裂隙的主要原因(刘仁峰,2005)。
(四)数据缝隙类别和表现
数据缝隙基本可以分为物理缝隙和逻辑缝隙两类。物理缝隙是地理空间的分离存储,本来连续的实体空间被分离到不同的存储空间和存储单元中去,例如空间数据的分幅、分层存储。逻辑缝隙是指逻辑上本身连续的信息不能以逻辑连续的方式呈现,例如跨越多幅图的一条河流,在图幅内查询河流属性(如长度)时只能获取其在本图幅内的相关信息而不是实体整体的信息。显然,由于空间信息本身的海量特性,要完全意义上的实现物理无缝的空间数据库目前还是不可能的,也没有必要。GIS用户关心的不是空间数据是物理无缝,因为GIS呈现给用户的是数据逻辑层,只需要保证用户看到的数据是逻辑无缝的。
物理有缝的数据库向逻辑无缝数据库的转换是无缝空间数据库构建的重要一环。
(五)无缝镶嵌技术
数据的无缝连接包含以下几个问题:投影、坐标系统、比例尺、数据精度等。对不同投影和坐标系统的空间数据在投影和坐标系统上统一采用相同的标准,当空间数据具有多尺度时,无缝连接寻找数据集之间连续的表达方式,它表现为不同尺度数据之间的集成。建立无缝空间数据的关键在于在合适的空间信息框架上实现多源异构空间数据的融合,框架是基础,融合是手段。
1合适的空间框架选择
(1)适合多尺度信息表达。地球是一个开放的非常复杂的巨大系统,随着观察视角的变化,我们希望空间地理信息比例尺也自动增减。由于地图的自动综合受诸多因素的影响,目前比较可行的是采用多尺度空间数据支持来达到目的。所谓多尺度就是指系统内包含几种不同比例尺(或分辨率)的空间数据,其目的是为了适度地反映系统所关心区域的空间地理信息,以避免地物信息的过粗、失真或地物信息的负载量过大而无法使用。无缝空间数据库也应该符合多尺度空间数据库要求。
(2)适合大区域表达。各种自然和人文现象的空间分布,有其内在的原因和规律,这些原因和规律的获得,往往需要研究大区域多因素的综合作用;另一方面,对于全球范围的环境变异和气候变迁的研究需要基于数字地球的空间框架。大区域的表达,还涉及空间尺度问题,不应继续采用欧氏空间尺度,而应该采用大地线尺度空间。
2多源异构空间数据的融合
(1)GIS的迅速发展和广泛应用导致了多源空间数据的产生。如何实现不同的GIS软件共享并 *** 作不同来源的地理数据,即GIS多源空间数据的集成,成为GIS发展的关键。目前GIS多源空间数据的集成主要朝着三个方向发展,一是通过建立统一的数据交换标准来约束并规范已有的各类地理信息系统,采用数据交换标准来进行空间数据交换;二是建立开放式地理数据互 *** 作规范,进行地理信息系统互 *** 作;三是GIS数据中间件技术。
(2)统一数据交换标准存在很多实现上的困难。互 *** 作是一个重要发展趋势,是在异构分布式数据库中实现信息共享的途径,它需要将GIS技术、分布处理技术、面向对象方法、数据库设计及实时信息获取方法更有效地结合起来。所谓GIS数据中间件技术是指能够嵌入各类GIS系统的软件,GIS开发者通过中间件开发商提供的接口,访问和 *** 作特定的数据源。
(3)在多源异构数据集成技术尚未成熟的时候,人们再次把目光投向数据本身,如果可以提供关于数据的详细描述,是否可以提高融合数据的能力呢于是,对于“关于数据的数据”的研究,即对于元数据的研究便普遍展开。从DublinCore到CSDGM与OGC,都提出了相应的元数据标准体系,有了完整而完善的元数据描述,必将提高数据的效能,从而最终促进多源异构数据库向无缝空间数据库的归化。
为实现塔河整个流域数据的无缝集成管理,使之形成统一的整体,设计从缝隙产生的地方开始,分离出数据物理层和数据逻辑层,在统一的空间框架之下,将物理层归化到逻辑层,以消除逻辑层的缝隙,从而实现用户级的逻辑无缝空间数据库;同时制定统一的数据提交规范,如所有矢量数据在入库前统一采用经纬度坐标,栅格数据统一提供两套数据,即高斯坐标和经纬度坐标,以满足不同用户的管理需求和精度要求。
ARCGIS软件是从ARC/INFO发展而来的,它的发展历史实际上也就是ESRI公司的发展历史。
美国环境系统研究所(Environmental Systems Research Institute Inc,简称ESRI)创建于1969年,总部位于加州的Redlands。公司最初是为企业创建和分析地理信息进行咨询工作的。 20世纪80年代,ESRI致力于发展和应用一套可运行在计算机环境中的,用来创建地理信息系统的核心开发工具,这就是今天众人所知的地理信息系统(GIS)技术。
1981 年 ESRI 发布了它的第一套商业 GIS 软件—— ARC/INFO 软件。它可以在计算机上显示诸如点、线、面等地理特征,并通过数据库管理工具将描述这些地理特征的属性数据结合起来。 ARC/INFO 被公认为是第一个现代商业 GIS 系统。
1986 年, PC ARC/INFO 的出现是 ESRI 软件发展史上的又一个里程碑,它是为基于 PC 的 GIS 站设计的。 PC ARC/INFO 的出现标志着 ESRI 成功地向 GIS 软件开发公司转型。
1992年,ESRI推出了ArcView软件,它使人们用更少的投资就可以获得一套简单易用的桌面制图工具。ArcView在刚刚出现的头六个月就在全球销售了10000套。同一年ESRI还发布了ArcData,它用于发布和出版商业的、即拿即用的、高质量数据集,使用户可以更快地构建和提升他们的GIS应用。今天这套程序已经被改进为Geographic Network系统。ArcCAD也在1992年推出,它的出现使用户可以在CAD环境下使用GIS工具。
在1995年,为了满足了B to B市场的需要,ESRI推出了SDE,这样空间数据和表格数据可以同时存储在商业的关系性数据库管理系统(DBMS)中。同时,ESRI还推出了BusinessMAP以及相关产品,为满足B to C市场的需求。
在二十世纪九十年代中期, ESRI 公司的产品线继续增长,推出了基于 Windows NT 的 ArcInfo 产品, MapObjects (基于软件开发的地图和 GIS 组件), Data Automation Kit ( DAK )和 Atlas GIS 也在同一时间推出。这样 ESRI 公司的产品线就可以为用户的 GIS 和制图需求提供多样的选择。 ERSI 公司也在世界 GIS 市场中占据了领先地位。
1997年,ESRI计划用COM组件技术将已有的GIS产品进行重组。之后更是进行了上百人/年的投入。终于在1999年的12月,发布了ArcInfo 8,同时也推出了ArcIMS,这是当时第一个只要运用简单的浏览器界面,就可以将本地数据和Internet网上的数据结合起来的GIS软件。
2001年的4月ESRI 开始推出ArcGIS 81,它是一套基于工业标准的GIS软件家族产品,提供了功能强大的,并且简单易用的完整的GIS解决方案。ArcGIS是一个可拓展的GIS系统,提供了对地理数据的创建、管理、综合、分析能力,ArcGIS还为单机和基于全球分布式网络的用户提供地理数据的发布能力。
2004年4月,ESRI推出了新一代9版本ArcGIS软件,为构建完善的GIS系统,提供了一套完整的软件产品。9版本中包含了两个主要的新产品:在桌面和野外应用中嵌入GIS功能的ArcGIS Engine,和为企业级GIS应用服务的中央管理框架ArcGIS Server。
今天,ESRI 的GIS产品在高速增长中依然保持着平衡。计算机技术的革新使得复杂的GIS *** 作可以在野外个人数字助理(PDA),桌面乃至整个企业级层面上完成。更快速、更廉价的电脑、网络 *** 作技术、电子数据出版和更易学易用工具的飞速出现,使得个人商业用户也可以将GIS技术引入其工作中作为决策工具。随着交互式地图 *** 作在互联网上的出现,任何计算机用户都可以从地理信息系统技术中获益。
ESRI产品发布时间表
时间 产品
1982 ARC/INFO 10
1983 ARC/INFO 20
1984 ARC/INFO 22
1985 ARC/INFO 30
1986 PC ARC/INFO 10
1987 ARC/INFO 40
1988 ARC/INFO 401
1989 ARC/INFO 50
1990 ARC/INFO 扩展模块 ArcGRID
1991 ARC/INFO 601
1992
ARC/INFO 61
ArcView 10
ArcCAD for AutoCAD 110
1993 ARC/INFO 611 and 612
ArcCAD for AutoCAD 113
1994
ARC/INFO 70
ArcView 20
PC ARC/INFO 342
1995
ARC/INFO 701, 702 and 703
ArcView 20
PC ARC/INFO 35
ArcCAD for AutoCAD 13
BusinessMap
Data Automation Kit (DAK)
Spatial Database Engine (SDE)
1996
MapObjects 10
BusinessMap 20
ArcView GIS 30 and Extension
PC ARC/INFO 35
ARC/INFO 71
1997
ARC/INFO 711 and 712
ArcView Internet Map Server
MapObjects 11a, 12 and MapObjects LT 10
ArcExplorer 10
SDE 30
PC ARC/INFO 351
DAK 351
ArcCAD for AutoCAD 1141
1998
ARC/INFO 72
ArcSDE 302
ArcView GIS 31 and Extension
ArcFM 72 and ArcFM Viewer 12
MapObjects Internet Map Server 20
ArcExplorer 11
ArcLogistics Route
1999
ArcInfo 8
MapObjects 20
ArcView GIS 32
2000
ArcIMS 3
ArcPad 50
MapObjects LT 2
PC ARC/INFO 40
ArcLogistics Route 2
2001
ArcGIS 81: ArcView 81, ArcInfo 81, ArcEditor 81, ArcSDE 81
MapObjects 21
ArcIMS 31
ArcExplorer 31 Java Edition
2002
ArcGIS 82
ArcView GIS 33
ArcIMS 40
MapObjects 22 and MapObjects Java Standard Edition
ArcPad 60
2003
ArcPad 601
ArcIMS 401
ArcGIS 83
ArcView 83, ArcEditor 83, and ArcInfo 83
ArcSDE 83
2004
ArcGIS 9
ArcView 9, ArcEditor 9, and ArcInfo 9
ArcReader 901
ArcGIS Data Interoperability Extension Module
ArcIMS 901
ArcGIS Server
ArcSDE 9
ArcGIS Engine
ArcPad 603
注:以上只列出了ESRI公司部分主要产品发布时间,如需扩展模块和其他产品最新的发布时间表,请访问:>
一、内容概述
在地质制图技术手段的变革中,真正具有革命性的是与数字式地质图生产模式相关的技术进步,涉及从野外地质工作直至最终成果提交的全过程。建立国家数字式地质空间数据库,是推行这种新工作模式的总体目标和必然结果。为此,各国都下大力气狠抓数据库设计、建设和不同类型数据库的联网,大力推进地质制图的标准化,除了对符合现代要求的现有数据进行数字式信息提取之外,还积极创造条件把数字式工作方式延伸到最基础的野外工作环节。GIS的产生、发展与机助制图系统存在着密切的联系,两者的相同之处是基于空间数据库的空间信息的表达、显示和处理。GIS包含了机助制图系统的所有组成和功能,并且GIS还有数据处理分析的功能。它用空间数据库和属性管理地质数据,包括了图形数据及属性数据,并可对二者的数据进行空间分析和空间查询。GlS技术是数据库技术、图形图像处理技术和数据分析与处理技术的综合,在地质制图及多学科研究数据的处理、集成、模拟、显现乃至成果图件的编绘等方面,都起着不可替代的作用。通过数字式地质图生产模式的推行,可以使反映新认识、新成果的新数据得以及时输入数据库并与原有的数据资源融为一体,既能以常规纸图的形式输出,也能以数字产品的形式输出,必要时还能根据用户的要求以非标准的专用产品形式输出。GIS的出现及其在地学领域应用的深入,使地质图作为地学研究的基础图件,正在告别纸质时代,进入数字化时代(姜作勤等,2001;王永生,2011)。
二、应用范围及应用实例
在国际上,美国、英国等国在20世纪80年代开始进行国家空间数据库的建设。1992年,美国国会通过了《国家地质填图法案》,要求开发一个国家地质数据库(NGMDB),该数据库涵盖了地质学、地球物理学、地球化学、地质年代学和古生物学等地质领域。从1997年起,美国地质调查局(USGS)和宇航局(NASA)建立了全国统一的分类标准和数据标准,并开始进行地质图的数字化工作。至今已完成了占国土面积一半以上区域的地质数据数字化工作,并建立了数据库。
在国际上,对1∶100万国际分幅地质图编制与更新工作非常重视。俄罗斯从1999年正式开始第三版(第三代)1∶100万国家地质图系列编制和出版工作,并且专门制定了《俄罗斯联邦1∶100万国家地质图系列编制和出版规范》,英国、法国、南非、印度、蒙古、朝鲜等也编制出版了全国1∶100万地质图件或专业图件,美国和加拿大编制出版了部分地区1∶100万地质图件或专业图件,意大利在2003年新出版了第五版1∶100万意大利地质图。
巴西1∶100万地质图由46幅按国际标准分幅的地质图幅拼接而成。这些图幅组成了数字地质信息库,通过地质信息系统来 *** 作管理。这些地质图数据是在野外工作、卫星图像解译、采样、同位素测年等工作基础上,通过对数据的编辑、分析、综合以及说明获得的。资料截止于2003年年底,由巴西地质调查局完成。他们出版了41张包含46幅地质图幅的电子光盘。
在巴西1∶100万国际分幅地质图的基础上,南美地质编图委员进行了南美洲1∶100万地质及矿产资源图的编制工作。南美洲1∶100万地质及矿产资源图由92幅标准图幅组成,其中包括了巴西的46幅。阿根廷、巴西和乌拉圭地质调查局在修正更新了1∶100万地质底图并结合了航天TDM雷达图像,共同完成了该项工作。
印度地质调查局在20世纪70~80年代编制了一套1∶100万地质图集,包括了28个图幅。近年来又陆续编制了AraValli地区1∶100万岩石层位图,KolarSchistBelt1∶100万综合地球物理及地质图,MadhyaPradest1∶100万地质矿产图(2幅),∶100万地质矿产图,喜马拉雅1∶100万地质图(45幅),印度及周边地区1∶100万地震构造图(42幅)。
目前,“planetearth”在2007~2009年的Year计划中提出了“透明地球”方案,并已经开始着手实施,目的在于提供不同比例尺的动态的、可以交互 *** 作的覆盖世界范围的数字地质图。该计划拟采用双重结构来 *** 作。第一层由UNESCO、IYPE、IUGS、CGMW、ISCGM、ICOGS组成的执行委员会来负责。第二层由各参与国家、调查机构和组织来运作。
该计划已经确定了由3个部分组成,这3个部分的图层都可以通过像GoogleEarth那样的动态地图浏览器被广大用户应用。前两个部分是为更大比例尺图层服务的介绍性图层,由CGMW提供:第一层(“25G”)建立在GCMW世界1∶2500万地质图基础上;第二层(“5G”)建立在大陆和大洋1∶500万地质图基础上。这两个图层将根据简单的图例在地质内容上进行相互协调。第三层“1M”由英国地质调查局(BGS)开始进行,又被称为“OneGeology”计划,这个图层是由各参与国地质调查局提供的1∶100万地质图组成的。不同地质数据间的重叠和不连续问题将由GeosciML(计算机图形接口数据模型及编码)软件来解决。同时,这些地质数据是动态的,可以随时进行更新。由英国地质调查局(BGS)发起并于2007年3月12日~16日在Brighton召开了会议讨论并正式启动该计划。
三、资料来源
姜作勤,张明华2001野外地质数据采集信息化所涉及的主要技术及其进展中国地质,28(2):36~42
王永生2011地质资料信息服务集群化产业化政策研究中国地质大学(北京)博士学位论文
以上就是关于GIS的概念全部的内容,包括:GIS的概念、 资源与环境研究中的GIS、无缝空间数据库设计与构建等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)