数据库的查询优化方法分析

数据库的查询优化方法分析,第1张

尽量不要使用 or 使用or会引起全表扫描 将大大降低查询效率

alice like % &abigale& % 会使索引不起作用(针对sqlserver)

经过实践验证 charindex()并不比前面加%的like更能提高查询效率 并且charindex()会使索引失去作用(指sqlserver数据库)

字段提取要按照 需多少 提多少 的原则 避免 select 尽量使用 select 字段 字段 字段 实践证明 每少提取一个字段 数据的提取速度就会有相应的提升 提升的速度还要看您舍弃的字段的大小来判断

order by按聚集索引列排序效率最高 一个sqlserver数据表只能建立一个聚集索引 一般默认为ID 也可以改为其它的字段

能使用exists和not exists尽量使用 避免使用in或not in

能使用表连接尽量使用 避免使用exists和not exists

SET NOCOUNT ON

正确使用UNION和UNION ALL

慎用SELECT DISTINCT

少用游标

使用表的别名(Alias)

当在SQL语句中连接多个表时 请使用表的别名并把别名前缀于每个Column上 这样可以减少解析的时间并减少那些由Column歧义引起的语法错误

尽量少使用游标

原因很简单;就是游标的算法是最原始的计算机算法(和for if等语句一样 一条条搜索来算;效率极低);

而sql语句用的是集合运算;速度则快的多;如果用索引速度则很快(用了指针)

创建索引

a 聚集索引:

聚集索引是磁盘存储和逻辑显示是一样的

mssql表的主键一般是聚集索引;主键(每一条记录唯一确定);

创建的主键自动会是聚集索引;

如有一个非常大的表(有百万行);很长时间磁盘存储上会有类似碎片(磁盘填充率效率低;一般是频繁删除造成的);

要提高它的性能的最简洁办法是:把这个表的主键去掉再保存后;然后重新设主键再保存;

(这个表就会在磁盘上重新整理排序;性能当然会提高哟)

b 非聚集索引:

非聚集索引是在外面建立小的附加表(一种树形结构;大多数是B或B+树);

读(遍历select等sql语句)表特快;但写(update;delete insert等sql语句)表性能会略微下降

针对数据量大的表建议非聚集索引不要超过 个(节省额外磁盘负担)

不要给类似 性别 列创建索引

死锁:

是指有线程在读一条记录;别的线程读这条记录就要等待;

在mssql中只要长期占那条记录的线程去掉;死锁就会解除

在mssql中锁是针对每一行记录(所以性能不错)

经常产生锁的原因有:

a 在sql语句中使用事务语句(特别是事务中当查询比较耗时)

b 在前台的应用程序的connetion冲突(未关闭)

c 多表联合查询(尤其是在打开大的数据集时)

sql语句优化

a is null not or in 不会用索引

b 避免在索引列上使用计算或函数处理(索引会大失性能) 还有 % ;有的甚至会全失索引性能

c SELECT中避免使用 (宁可把需要字段列出来;而不要用去把所有的字段都列出来)

d 避免相关子查询(select中套select)

e where的条件中 =>exists>in (指性能)

f order by group by having distinct 等语句要慎用(因为它们效率不高;它们是先把数据到临时表中再进行处理的)

g 聚集索引如有 个字段组成(tt 和tt );tt 在前面;where的条件中如只用tt 字段来判断;就会用到一半的聚集索引;

where的条件中如tt 和tt 字段都用来判断了;就会全用到聚集索引;

where的条件中如只用tt 字段来判断;就会用不到聚集索引了;

尽量不要使用TEXT数据类型

除非你使用TEXT处理一个很大的数据 否则不要使用它 因为它不易于查询 速度慢 用的不好还会浪费大量的空间

一般的 VARCHAR可以更好的处理你的数据

尽量不要使用临时表

尽量不要使用临时表 除非你必须这样做 一般使用子查询可以代替临时表 使用临时表会带来系统开销

如果前台的代码你是使用数据库连接池而临时表却自始至终都存在 SQL Server提供了一些替代方案 比如Table数据类型

尽量少使用外键和触发器

因为在mssql中这些功能的性能做得不是很好;随便动一下表(它就会到相关的表去搞判断;有很多情况并不需要);在后台消耗资源大

lishixinzhi/Article/program/Oracle/201311/16744

在JAVA开发中数据库的学习也是我们需要了解的,截下来几篇文章都是关于数据库的设计和应用,那么java课程培训机构>

设计数据库要满足三大范式:第一范式:

1、内容相似的数据列必须消除(消除的办法就是再创建一个数据表来存放他们,建立关联关系)

2、必须为每一组相关数据分别创建一个表

3、每条数据记录必须用一个主键来标示

第二范式:

1、只要数据列里面的内容出现重复,就意味着应该把表拆分为多个表

2、拆分形成的表必须用外键关联起来。

第三范式:

1、与主键没有直接关系的数据列必须消除(消除的办法就是再创建一个表来存放他们)

在mysql安装目录下,比如:D:ProgramFilesMySQLMySQLServer51

里面有几个配置文件,只要修改名字成为myini即可,比如:

my-hugeini巨型服务器

my-largeini大型

my-mediumini中型

my-smallini小型

备份原来的,并重命名,重新启动即可。其中,[mysqld]这一节是mysql服务器的配置信息。

下面以关系数据库系统Informix为例,介绍改善用户查询计划的方法。 1.合理使用索引 索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。

在JAVA开发中数据库的学习也是我们需要了解的,截下来几篇文章都是关于数据库的设计和应用,那么java课程培训机构废话不多说开始学习吧!

数据库的设计

数据库设计是基础,数据库优化是建立在设计基础之上的。好的数据库一定拥有好的设计。

数据库设计的目标是为用户和各种应用系统提供一个信息基础设施和高效的运行环境。

数据库的三大范式

第一范式1NF:所有的域都应该是原子性的,即数据库表的每一列都是不可分割的原子数据项,而不能是集合,数组,记录等非原子数据项。

第二范式2Nf:第二范式在第一范式的基础之上更进一层。第二范式需要确保数据库表中的每一列都和主键相关,而不能只与主键的某一部分相关(主要针对联合主键而言)。也就是说在一个数据库表中,一个表中只能保存一种数据,不可以把多种数据保存在同一张数据库表中。

第三范式3Nf:所有字段必须与主键直接相关,而不是间接相关。也可以理解为字段不要和其他非主键字段相关

注意:这三个范式尽可能去遵守,不是一定要墨守成规这只是让我们设计的表的时候,越靠近这些范式,可以使字段尽量的减小冗余但是有时候也可以根据实际需要小小的违背一下但是第三范式违反一下还可以接受,但是第一范式别违反

数据库设计的步骤

需求分析阶段

准确了解与分析用户需求(包括数据与处理)。是整个设计过程的基础,是最困难、最耗费时间的一步。

概念结构设计阶段

是整个数据库设计的关键--设计数据库的E-R模型图,确认需求信息的正确和完整

Entity_Relationship---实体之间的关系

一对一

一对多

多对一

为了能最小化磁盘I/O MyISAM 存储引擎采用了很多数据库系统使用的一种策略 它采用一种机制将最经常访问的表保存在内存区块

对索引区块来说 它维护着一个叫索引缓存(索引缓冲)的结构体 这个结构体中放著许多那些最常使用的索引区块的缓冲区块 对数据区块来说 MySQL没有使用特定的缓存 它依靠 *** 作系统的本地文件系统缓存

本章首先描述了 MyISAM 索引缓存的基本 *** 作 然后讨论在MySQL 中所做的改进 它提高了索引缓存性能 同时能更好地控制缓存 *** 作

线程之间不再是串行地访问索引缓存 多个线程可以并行地访问索引缓存 可以设置多个索引缓存 同时也能指定数据表索引到特定的缓存中

索引缓存机制对 ISAM 表同样适用 不过 这种有效性正在减弱 自从MySQL 开始 MyISAM 表类型引进之后 ISAM 就不再建议使用了 MySQL 更是延续了这个趋势 ISAM 类型默认被禁用了

可以通过系统变量 key_buffer_size 来控制索引缓存区块的大小 如果这个值大小为 那么就不使用缓存 当这个值小得于不足以分配区块缓冲的最小数量( )时 也不会使用缓存

当索引缓存无法 *** 作时 索引文件就只通过 *** 作系统提供的本地文件系统缓冲来访问(换言之 表索引区块采用的访问策略和数据区块的一致)

一个索引区块在 MyISAM 索引文件中是一个连续访问的单元 通常这个索引区块的大小和B树索引节点大小一样(索引在磁盘中是以B树结构来表示的 这个树的底部时叶子节点 叶子节点之上则是非叶子节点)

在索引缓存结构中所有的区块大小都是一样的 这个值可能等于 大于 或小于表的索引区块大小 通常这两个值是不一样的

当必须访问来自任何表的索引区块时 服务器首先检查在索引缓存中是否有可用的缓冲区块 如果有 服务器就访问缓存中的数据 而非磁盘 就是说 它直接存取缓存 而不是存取磁盘 否则 服务器选择一个(多个)包含其它不同表索引区块的缓存缓冲区块 将它的内容替换成请求表的索引区块的拷贝 一旦新的索引区块在缓存中了 索引数据就可以存取了

当发生被选中要替换的区块内容修改了的情况时 这个区块就被认为 脏 了 那么 在替换之前 它的内容就必须先刷新到它指向的标索引

通常服务器遵循LRU(最近最少使用)策略 当要选择替换的区块时 它选择最近最少使用的索引区块 为了想要让选择变得更容易 索引缓存模块会维护一个包含所有使用区块特别的队列(LRU链) 当一个区块被访问了 就把它放到队列的最后位置 当区块要被替换时 在队列开始位置的区块就是最近最少使用的 它就是第一候选删除对象

共享访问索引缓存

在MySQL 以前 访问索引缓存是串行的 两个线程不能并行地访问索引缓存缓冲 服务器处理一个访问索引区块的请求只能等它之前的请求处理完 结果 新的请求所需的索引区块就不在任何索引缓存环冲区块中 因为其他线程把包含这个索引区块的缓冲给更新了

从MySQL 开始 服务器支持共享方式访问索引缓存

没有正在被更新的缓冲可以被多个线程访问

缓冲正被更新时 需要使用这个缓冲的线程只能等到更新完成之后

多个线程可以初始化需要替换缓存区块的请求 只要它们不干扰别的线程(也就是 它们请求不同的索引区块 因此不同的缓存区块被替换)

共享方式访问索引缓存令服务器明显改善了吞吐量

多重索引缓存

共享访问索引缓存改善了性能 却不能完全消除线程间的冲突 它们仍然争抢控制管理存取索引缓存缓冲的结构 为了更进一步减少索引缓存存取冲突 MySQL 提供了多重索引缓存特性 这能将不同的表索引指定到不同的索引缓存

当有多个索引缓存 服务器在处理指定的 MyISAM 表查询时必须知道该使用哪个 默认地 所有的 MyISAM 表索引都缓存在默认的索引缓存中 想要指定到特定的缓存中 可以使用 CACHE INDEX 语句

如下语句所示 指定表的索 t t 和 t 引缓存到名为 hot_cache 的缓存中

mysql> CACHE INDEX t  t  t  IN hot_cache; + + + + + | Table | Op | Msg_type | Msg_text | + + + + + | test t  | assign_to_keycache | status | OK | | test t  | assign_to_keycache | status | OK | | test t  | assign_to_keycache | status | OK | + + + + +

注意 如果服务器编译支持存 ISAM 储引擎了 那么 ISAM 表也使用索引缓存机制 不过 ISAM 表索引只能使用默认的索引缓存而不能自定义

CACHE INDEX 语句中用到的索引缓存是根据用 SET GLOBAL 语句的参数设定的值或者服务器启动参数指定的值创建的 如下 mysql> SET GLOBAL keycache key_buffer_size= ;想要删除索引缓存 只需设置它的大小为 mysql> SET GLOBAL keycache key_buffer_size= ;索引缓存变量是一个结构体变量 由名字和组件构成 例如 keycache key_buffer_size keycache 就是缓存名 key_buffer_size 是缓存组件 默认地 表索引在服务器启动时指定到主(默认的)索引缓存中 当一个索引缓存被删掉后 指定到这个缓存的所有索引都被重新指向到了默认索引缓存中去 对一个繁忙的系统来说 我们建议以下三条策略来使用索引缓存 热缓存占用 %的总缓存空间 用于繁重搜索但很少更新的表 冷缓存占用 %的总缓存空间 用于中等强度更新的表 如临时表 冷缓存占用 %的总缓存空间 作为默认的缓存 用于所有其他表 使用三个缓存的一个原因是好处在于 存取一个缓存结构时不会阻止对其他缓存的访问 访问一个表索引的查询不会跟指定到其他缓存的查询竞争 性能提高还表现在以下几点原因 热缓存只用于检索记录 因此它的内容总是不需要变化 所以 无论什么时候一个索引区块需要从磁盘中引入 被选中要替换的缓存区块的内容总是要先被刷新 索引被指向热缓存中后 如果没有需要扫描全部索引的查询 那么对应到B树中非叶子节点的索引区块极可能还保留在缓存中 在临时表里必须频繁执行一个更新 *** 作是相当快的 如果要被更新的节点已经在缓存中了 它无需先从磁盘中读取出来 当临时表的索引大小和冷缓存大小一样时 那么在需要更新一个节点时它已经在缓存中存在的几率是相当高的

中点插入策略

默认地 MySQL 的索引缓存管理系统采用LRU策略来选择要被清除的缓存区块 不过它也支持更完善的方法 叫做 中点插入策略

使用中点插入策略时 LRU链就被分割成两半 一个热子链 一个温子链 两半分割的点不是固定的 不过缓存管理系统会注意不让温子链部分 太短 总是至少包括全部缓存区块的 key_cache_division_limit 比率 key_cache_division_limit 是缓存结构体变量的组件部分 因此它是每个缓存都可以设置这个参数值

当一个索引区块从表中读入缓存时 它首先放在温子链的末尾 当达到一定的点击率(访问这个区块)后 它就提升到热子链中去 目前 要提升一个区块的点击率( )对每个区块来说都是一样的 将来 我们会让点击率依靠B树中对应的索引区块节点的级别 包含非叶子节点的索引区块所要求的提升点击率就低一点 包含叶子节点的B索引树的区块的值就高点

提升起来的区块首先放在热子链的末尾 这个区块在热子链内一直循环 如果这个区块在该子链开头位置停留时间足够长了 它就会被降级回温子链 这个时间是由索引缓存结构体变量的组件 key_cache_age_threshold 值来决定的

这个阀值是这么描述的 一个索引缓存包含了 N 个区块 热子链开头的区块在低于 Nkey_cache_age_threshold/ 次访问后就被移动到温子链的开头位置 它又首先成为被删除的候选对象 因为要被替换的区块还是从温子链的开头位置开始的

中点插入策略就能在缓存中总能保持更有价值的区块 如果更喜欢采用LRU策略 只需让 key_cache_division_limit 的值低于默认值

中点插入策略能帮助改善在执行需要有效扫描索引 它会将所有对应到B树中高级别的有价值的节点推出的查询时的性能 为了避免这样 就必须设定 key_cache_division_limit 远远低于 以采用中点插入策略 则在扫描索引 *** 作时那些有价值的频繁点击的节点就会保留在热子链中了

索引预载入

如果索引缓存中有足够的区块用来保存全部索引 或者至少足够保存全部非叶子节点 那么在使用前就载入索引缓存就很有意义了 将索引区块以十分有效的方法预载入索引缓存缓冲 从磁盘中顺序地读取索引区块

没有预载入 查询所需的索引区块仍然需要被放到缓存中去 虽然索引区块要保留在缓存中 因为有足够的缓冲 它们可以从磁盘中随机读取到 而非顺序地

想要预载入缓存 可以使用 LOAD INDEX INTO CACHE 语句 如下语句预载入了表 t 和 t 的索引节点(区块)

mysql> LOAD INDEX INTO CACHE t  t  IGNORE LEAVES; + + + + + | Table | Op | Msg_type | Msg_text | + + + + + | test t  | preload_keys | status | OK | | test t  | preload_keys | status | OK | + + + + +

增加修饰语 IGNORE LEAVES 就只预载入非叶子节点的索引区块 因此 上述语句加载了 t 的全部索引区块 但是只加载 t 的非叶子节点区块

如果使用 CACHE INDEX 语句将索引指向一个索引缓存 将索引区块预先放到那个缓存中去 否则 索引区块只会加载到默认的缓存中去

索引缓存大小

MySQL 引进了对每个索引缓存的新变量 key_cache_block_size 这个变量可以指定每个索引缓存的区块大小 用它就可以来调整索引文件I/O *** 作的性能

当读缓冲的大小和本地 *** 作系统的I/O缓冲大小一样时 就达到了I/O *** 作的最高性能了 但是设置索引节点的大小和I/O缓冲大小一样未必能达到最好的总体性能 读比较大的叶子节点时 服务器会读进来很多不必要的数据 这大大阻碍了读其他叶子节点

目前 还不能控制数据表的索引区块大小 这个大小在服务器创建索引文件 ` MYI 时已经设定好了 它根据数据表的索引大小的定义而定 在很多时候 它设置成和I/O缓冲大小一样 在将来 可以改变它的值 并且会全面采用变量 key_cache_block_size

重建索引缓存

索引缓存可以通过修改其参数值在任何时候重建它 例如

mysql> SET GLOBAL cold_cache key_buffer_size= ;

如果设定索引缓存的结构体变量组件变量 key_buffer_size 或 key_cache_block_size 任何一个的值和它当前的值不一样 服务器就会清空原来的缓存 在新的变量值基础上重建缓存 如果缓存中有任何的 脏 索引块 服务器会先把它们保存起来然后才重建缓存 重新设定其他的索引缓存变量并不会重建缓存

lishixinzhi/Article/program/Oracle/201311/16615

以上就是关于数据库的查询优化方法分析全部的内容,包括:数据库的查询优化方法分析、北大青鸟java培训:Mysql数据库的设计和优化、如何优化数据库等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10130335.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-05
下一篇 2023-05-05

发表评论

登录后才能评论

评论列表(0条)

保存