人脸识别技术
首先我们来了解下人脸识别本身的技术。在人工智能技术的持续的进化下,人脸识别的准确率也在逐渐提升,我们已经能看到有多家企业在国际权威人脸识别数据库LFW上刷新纪录的消息,实验室的数据高达995%甚至往上,这是人脸识别技术应用到实际业务中的基础,我们也为此感到高兴。
影响人脸识别的因素有很多,其中影响人脸检测的因素有:光照、人脸姿态、遮挡程度;影响特征提取的因素有:光照、表情、遮挡、年龄,模糊是影响人脸识别精度的关键因素。而在跨年龄人脸检测中影响因素更多。
一般而言,在跨年龄阶段人脸识别中,类内变化通常大于类间变化(不同人相似年龄的照片的相似度有时比同一人不同年龄段的照片相似度更高),这造成了人脸识别的巨大困难。同时,跨年龄的训练数据难以收集,没有足够多的数据,基于深度学习的神经网络很难学习到跨年龄的类内和类间变化。
针对这些技术难点,目前相关技术提供商均在通过优化算法以及加大对模型的训练来寻求突破,我们也能从相关的资讯中了解到人脸识别监测精度的发展进度,它们的落地领域包括应用最为广泛的安防监控以及金融、商业应用等领域
人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。
技术优势:1、 非接触,智能识别,用户接受程度高。2、 直观性突出,符合“以貌识人”的认知规律。3、 适应性强,安全性高,应用领域广。所谓脸部识别也是基于生物特征的识别方式,跟指纹识别相比具有独特的优势:脸部识别准确率更高,速度更快。在安全性要求高的应用场合,人脸识别技术要求识别对象必须亲临识别现场,难以被仿冒。人脸识别技术所独具的活性判别能力保证了他人无法以非活性的物体来欺骗识别系统。这是指纹等生物特征识别技术所很难做到的。
人脸数据分析是什么
人脸数据分析是什么,人脸识别是基于人的脸部特征信息进行身份识别的一种生物识别技术,随着科技发展现在很多场所都用的到人脸分析,很多人还不清楚其中的原理是什么,那么就来了解一下人脸数据分析是什么吧。
人脸数据分析是什么1一、人脸识别技术
完整的人脸识别系统一般包括人脸检测跟踪、人脸关键点定位、人脸属性分析、人脸验证、人脸识别、人脸聚类等模块。
1、人脸检测跟踪:
人脸检测跟踪技术提供快速、高准确率的人像检测功能。对背景复杂低质量的或百人人群监控视频,可以在移动设备和个人电脑上实现毫秒级别的人脸检测跟踪。
2、人脸关键点定位:
人脸关键点定位可以精确定位面部的关键区域位置,微秒级别眼,口,鼻轮廓等人脸106个关键点定位。该技术可适应一定程度遮挡和大角度侧脸,表情变化,遮挡,模糊,明暗变化等各种实际环境。
3、人脸属性分析:
提供准备的面部分析技术,准确识别10多种人脸属性大类,例如性别,年龄、种族、表情、饰品、胡须、面部动作状态等。可以用于广告定向投放或顾客信息分析,让你秒懂顾客户心。
4、人脸验证、识别、聚类:
人脸验证技术可被用于登录验证、身份识别等应用场景。给定人脸样本,毫秒级别检索大规模人脸数据库或监控视频,给出身份认证,实现身份和人脸绑定。
人脸识别技术可以自动识别出照片、视频流中的人脸身份,可以实现安防检查、VIP识别、照片自动圈人、人脸登录等功能能,在认证出96%的人脸时,误检率低于十万分之一。数十万人的人脸快速聚类,可用于基于人脸的智能相册以及基于合影的社交网络分析。让照片管理更直观,让社交关系更清晰。
二、智能广告大数据分析特点
1、精确统计进出店铺的客流量:
启动应用,显示人脸识别检测界面,通过人脸识别技术检测头肩、检测人脸、对人脸进行跟踪识别,提取人脸特征值,进行精准的人体判断,准确的识别用户人脸,基于人体跟踪,有效避免因徘徊、逗留引起的重复计数,从而达到精确统计进出店铺的客流量的数据。在统计客流量的同时展示店铺的广告宣传信息、店铺简介、特色产品、售后服务等相关信息。
2、精准分析入店客户:
通过人脸识别技术,主动分析每一位停留观看广告的年龄、性别、并实时上传至服务器,管理者通过对消费群体的数据分析,精准挖掘出店铺和产品主要面向的销售者群体属于哪一类人,从而改善产品设计、运营模式、推广方案,极大有利于提升店铺的利润和广告的回报率。
3、精确认识和挖掘VIP客户:
精确、实时识别VIP客户并推送用户信息至店员手机,VIP客户历史入店信息及购买记录一目了然,店员重点接待VIP客户大大提升店铺营业额。通过大数据分析挖掘回头客,提升客户提袋率及VIP客户转化率,系统自动识别并排除店员,不再误统计为客流,真正做到准确的数据分析。
4、完备的报表:数据即事实 :
大数据分析并形成简洁、客观、精确的数据报表,直观的看到每日/月的客流量( 人数、人次)、客流人群分布(年龄、性别)、入店率、平均关注时间、提袋率(转化率),对店铺的客流量进行趋势分析(日、周、月),进行统一的广告效果分析,精准挖掘出每一个广告后面隐藏的客户数据,极大有利于广告制作和投放的精准营销,帮助商家精准定位有效客群,为投放商、制作方等相关企业提供可靠的数据参考,发现提高有效展示和回报率的关键。
5、大数据分析,驱动管理优化
通过大数据可以分析店铺什么产品最受关注、产品的目标客户群是哪些人、最受关注的产品是什么、单个产品为何有些销量高有些则低、VIP客户关注的是什么产品、什么区域受冷落、什么区域关注度比较高。
通过数据分析的结果优化店铺管理,找出最适合店铺的经营模式、消费者最关注的广告、转化率最高的产品、根据客户逛店路径分析热点区域,调整主打产品陈列引起客户关注度,改善店员服务过程中存在的不足,从宏观到细节进行优化,达到店铺的利益最大化。
6、 主动推送潜在客户,方便直接的提供业务帮助
将采集到的多用户信息进行聚类并分析得到统计数据,根据驻足观看的用户性别不同、年龄层次不同,1-2秒内切换广告内容,推送更针对性的产品广告信息。比如,为20-30岁的男性用户推送剃须刀、洗面奶等适合他们需求的广告,从而有效提高广告的关注效果,提高广告的传播和产品购买的`转化率。
人脸数据分析是什么2人脸数据分析的应用价值
人脸识别需要积累采集到的大量人脸图像相关的数据,用来验证算法,不断提高识别准确性,这些数据诸如A Neural Network Face Recognition Assignment(神经网络人脸识别数据)、orl人脸数据库、麻省理工学院生物和计算学习中心人脸识别数据库、埃塞克斯大学计算机与电子工程学院人脸识别数据等。
1、在人脸识别的设备上,除人脸识别区域外,设置固定的广告播放区域,使用多媒体信息发布系统,定时或不定时地轮播商家自定义的广告,比如商家简介、产品介绍、活动促销、****等多媒体信息。
内容展现方式多种多样,可以是视频、、文字、流媒体等素材,让用户体验到现代化购物的感觉,智能化的液晶产品可以让店铺的整体美观度大大提升,顿刻显得高大上。
2、对于每一个广告投放商而言,广告效果的好坏直接关系到投入产出比,也决定着未来是否需继续投放。而对于广告制作方来说,什么样的广告最能吸引目标客户?提高有效传播率,他们需要足够的数据调研来为下一步广告制作提供依据。
为此,南翼基于人脸识别的智能广告大数据分析解决方案,为广告机提供广告效果分析解决方案,帮助商家精准定位有效客群,为投放商、制作方等相关企业提供可靠的数据参考,发现提高有效展示和回报率的关键,提升广告运营的价值。
3、除了人脸识别外,我们还提供手势识别技术,用户可以自由通过简单、通用的手势进行广告内容的切换,或者还可以在线玩一些有趣的游戏,从而提高用户的好感度,也可以通过完成商家指定的人脸表情赢得奖品等活动来增强商家与客户的互动性。
给你提供几个线索,数据都可以去数据堂下载。\x0d\\x0d\1FERET人脸数据库-\x0d\由FERET项目创建,包含1万多张多姿态和光照的人脸图像,是人脸识别领域应用最广泛的人脸数据库之一其中的多数人是西方人,每个人所包含的人脸图像的变化比较单一\x0d\\x0d\2CMU-PIE人脸数据库\x0d\由美国卡耐基梅隆大学创建,包含68位志愿者的41,368张多姿态,光照和表情的面部图像其中的姿态和光照变化图像也是在严格控制的条件下采集的,目前已经逐渐成为人脸识别领域的一个重要的测试集合\x0d\\x0d\3YALE人脸数据库\x0d\由耶鲁大学计算视觉与控制中心创建,包含15位志愿者的165张,包含光照,表情和姿态\x0d\的变化\x0d\\x0d\4YALE人脸数据库B\x0d\包含了10个人的5,850幅多姿态,多光照的图像其中的姿态和光照变化的图像都是在严格控制的条件下采集的,主要用于光照和姿态问题的建模与分析由于采集人数较少,该数据库的进一步应用受到了比较大的限制\x0d\\x0d\5MIT人脸数据库\x0d\由麻省理工大学媒体实验室创建,包含16位志愿者的2,592张不同姿态,光照和大小的面部图像\x0d\\x0d\6ORL人脸数据库\x0d\由剑桥大学AT&T实验室创建,包含40人共400张面部图像,部分志愿者的图像包括了姿态,\x0d\表情和面部饰物的变化该人脸库在人脸识别研究的早期经常被人们采用,但由于变化模式较少,多数系统的识别率均可以达到90%以上,因此进一步利用的价值已经不大\x0d\\x0d\7BioID人脸数据库\x0d\包含在各种光照和复杂背景下的1521张灰度面部图像,眼睛位置已经被手工标注。
资料:数据库(原图像)、对齐后的图像(两种方法)、训练测试方法(两种View)、已有的错误列表
LFW主页上有一个pdf详细说明了这个库如何用于识别。
pdf中还有N多个人脸数据库的列表,对于初学者是个很好的积累。
大数据人脸分析案例
大数据人脸分析案例,随着社会科技的不断发展,人工技能,人脸识别技术也不断普及到各个领域。人脸识别技术可以在大数据的环境下,极大发挥其强大的作用。下文分享有关大数据人脸分析的内容。
大数据人脸分析案例1基于特征的方法和基于图像的方法
1、基于特征的方法
技术:基于特征的方法试图找到人脸的不变特征进行检测。其基本思想是基于人类视觉可以毫不费力地检测不同姿势和光照条件下的人脸的观察,因此必须有尽管存在这些变化的属性或特征是一致的。当前已经提出了广泛的方法来检测面部特征,然后推断面部的存在。
示例:边缘检测器通常会提取人脸特征,例如眼睛、鼻子、嘴巴、眉毛、肤色和发际线。基于提取的特征,建立统计模型来描述它们之间的关系并验证人脸在图像中的存在。
优点:易于实施,传统方法
缺点:基于特征的算法的一个主要问题是图像特征可能会由于光照、噪声和遮挡而严重损坏。此外,人脸的特征边界会被弱化,阴影会导致强边缘,这使得感知分组算法无用。
2、基于图像的方法
技术:基于图像的方法尝试从图像中的示例中学习模板。因此,基于外观的方法依靠机器学习和统计分析技术来找到“人脸”和“非人脸”图像的相关特征。学习的特征是以分布模型或判别函数的形式应用于人脸检测任务。
示例:基于图像的方法包括神经网络 (CNN)、支持向量机 (SVMi) 或 Adaboost。
优点:性能好,效率更高
缺点:难以实施。 为了计算效率和检测效率,通常需要降维。这意味着通过获得一组主要特征来考虑降低特征空间的维数,保留原始数据的有意义的属性。
人脸检测方法
已经引入了多种人脸检测技术。
1、开始阶段:人脸检测自 90 年代出现以来一直是一个具有挑战性的研究领域。
2000 年之前,尽管有很多研究,但直到 Viola 和 Jones 提出里程碑式的工作,人脸识别的实际性能还远不能令人满意。 从 Viola—Jones 的开创性工作(Viola and Jones 2004)开始,人脸检测取得了长足的进步。
Viola and Jones 开创性地使用 Haar 特征和 AdaBoost 来训练一个有希望的准确度和效率的人脸检测器(Viola and Jones 2004),这启发了之后有几种不同的方法。 然而,它有几个严重的缺点。首先,它的特征尺寸比较大。另外,它不能有效地处理非正面人脸和框外人脸。
2、早期阶段——机器学习:早期的方法主要集中在与计算机视觉领域的专家一起提取不同类型的手工特征,并训练有效的分类器以使用传统的机器学习算法进行检测。
这些方法的局限性在于它们通常需要计算机视觉专家来制作有效的特征,并且每个单独的组件都单独优化,使得整个检测流程往往不是最佳的。
为了解决第一个问题,人们付出了很多努力来提出更复杂的特征,如 HOG(定向梯度直方图)、SIFT(尺度不变特征变换)、sURF(加速鲁棒特征)和 ACF(聚合通道特征)。检测的鲁棒性,已经开发了针对不同视图或姿势分别训练的多个检测器的组合。然而,此类模型的训练和测试通常更耗时,并且检测性能的提升相对有限。3
3、最新技术 — 深度学习:近年来,使用深度学习方法,尤其是深度卷积神经网络 (CNN) 的人脸识别取得了显着进展,在各种计算机视觉任务中取得了显显著的成功。
与传统的计算机视觉方法相比,深度学习方法避免了手工设计的不足,并主导了许多著名的基准评估,例如 lmageNet大规模视觉识别挑战 (ILSVRC)。
最近,研究人员应用了 Faster R—CNN,这是最先进的通用对象检测器之一,并取得了可喜的成果。此外,CNN 级联、区域提议网络(RPN)和 Faster R—CNN 联合训练实现了端到端的优化,以及人脸检测基准,如 FDDB(人脸数据库)等。
主要挑战
人脸检测面临的困难是降低人脸识别准确率和检测率的原因。
这些挑战是复杂的背景、图像中的人脸过多、奇怪的表情、光照、分辨率较低、人脸遮挡、肤色、距离和方向等。
不寻常的面部表情:图像中的人脸可能会显示出意外或奇怪的面部表情。
照明度:某些图像部分可能具有非常高或非常低的照明度或阴影。
皮肤类型:检测不同人脸颜色的人脸检测具有挑战性,需要更广泛的训练图像多样性。
距离:如果到相机的距离太远,物体尺寸(人脸尺寸)可能太小。
朝向:人脸方向和相机的角度会影响人脸检测率。
复杂的背景: 场景中的大量对象会降低检测的准确性和速度。
一张图像中有很多人脸:一张包含大量人脸的图像对于准确检测率来说非常具有挑战性。
人脸遮挡:人脸可能会被眼镜、围巾、手、头发、帽子等物体部分遮挡,影响检测率。
低分辨率:低分辨率图像或图像噪声会对检测率产生负面影响。
人脸检测应用场景
人群监控:人脸检测用于检测经常光顾的公共或私人区域的人群。
人机交互: 多个基于人机交互的系统使用面部识别来检测人类的存在。
摄影:最近的一些数码相机使用面部检测进行自动对焦等等。
面部特征提取:可以从图像中提取鼻子、眼睛、嘴巴、肤色等面部特征。 、
性别分类: 通过人脸检测方法检测性别信息。
人脸识别:从数字图像或视频帧中识别和验证一个人。
营销:人脸检测对于营销、分析客户行为或定向广告变得越来越重要。
出勤:面部识别用于检测人类的出勤情况, 它通常与生物识别检测结合用于访问管理,如智能门禁。
大数据人脸分析案例22014年前后,随着大数据和深度学习的发展,神经网络备受瞩目,深度学习的出现使人脸识别技术取得了突破性进展。深度学习是机器学习的一种,其概念源于人工神经网络的研究,通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。
区别于传统的浅层学习,深度学习的不同在于一方面通常有5层以上的'多层隐层节点,模型结构深度大;另一方面利用大数据来学习特征,明确了特征学习的重要性。
随着深度卷积神经网络和大规模数据集的最新发展,深度人脸识别取得了显著进展,基于深度学习的人脸识别技术可以通过网络自动学习人脸面部特征,从而提高人脸检测效率。
从人脸表达模型来看,可细分为2D人脸识别和3D人脸识别。基于2D的人脸识别通过2D摄像头拍摄平面成像,研究时间相对较长,在多个领域都有使用,但由于2D信息存在深度数据丢失的局限性,收集的信息有限,安全级别不够高,在实际应用中存在不足。
早在2019年,就有小学生手举照片“攻破”了快递柜的人脸识别系统。基于3D的人脸识别系统通过3D摄像头立体成像,由两个摄像头、一个红外线补光探头和一个可见光探头相互配合形成3D图像,能够准确分辨出照片、视频、面具等逼真的攻击手段。
根据使用摄像头成像原理,目前3D人脸识别主要有三种主流方案,分别是3D结构光方案(Structured Light)、时差测距技术3D方案(Time Of Flight,TOF)和双目立体成像方案(Stereo System)。基于3D结构光的人脸识别已在一些智能手机上实际应用,比如HUAWEI Mate 20 Pro、iPhone X。
2009年微软推出的Kinect(Xbox 360体感周边外设)则采用了TOF方式获取3D数据,颠覆了游戏的单一 *** 作,为人机体感交互提供了有益探索。双目立体成像方案基于视差原理,通过多幅图像恢复物体的三维信息,由于对相机焦距、两个摄像头平面位置等要求较高,应用范围相对于3D结构光和TOF方案较窄。
除了能够准确识人,精准判断捕捉到的人脸是真实的也至关重要。活体检测技术能够在系统摄像头正确识别人脸的同时,验证用户是本人而不是照片、视频等常见攻击手段。目前活体检测分为三种,分别是配合式活体检测、静默活体检测和双目活体防伪检测。
其中,配合式活体检测最为常见,比如在银行“刷脸”办理业务、在手机端完成身份认证等应用场景,通常需要根据文字提示完成左看右看、点头、眨眨眼等动作,通过人脸关键点定位和人脸追踪等技术,验证用户是否为真实活体本人。
人脸与人体的其他生物特征(如指纹、虹膜等)一样与生俱来,它的唯一性和不易被复制的良好特性为身份鉴别提供了必要的前提。随着大数据和深度学习的不断发展,人脸识别效率显著提升,为远程办理业务的身份认证环节提供了可靠保障。
但与此同时,人脸信息保护、隐私安全等问题也应引起重视。随着《个人信息保护法》《数据安全法》及相关司法解释的出台,国家相关部门以及各种机构对个人信息安全问题的重视,有利于引导人脸识别技术的发展方向,为促进行业高质量发展、创造高品质数字生活提供有力支撑。
大数据人脸分析案例3人脸识别的应用场景在大范围扩展:
金融领域:远程银行开户、身份核验、保险理赔和刷脸支付等。人脸识别技术的接入,能有效提高资金交易安全的保障,也提高了金融业务中的便捷性。
智慧安防领域则是为了视频结构化、人物检索、人脸布控、人群统计等软硬件一体形态产品提供基础支撑,重点应用于犯罪人员的识别追踪、失踪儿童寻找、反恐行动助力等场景。实现重点人员的识别及跟踪,在公安应用场景中达到事前预警、事中跟踪、事后快速处置的目的。
交通领域主要包括1:1人脸验证和1:N人脸辨识,目前利用人脸核验验证技术的刷脸安检已进入普遍应用阶段,在高铁站、普通火车站和机场皆已大面积推广。
而应用1:N人脸比对技术的刷脸支付主要落地在地铁公交等市内交通,这种技术能够极大提高通勤人员的出行效率,释放大量的人力资源,提升出行体验。同时,人脸识别可以对交通站点进行人流监测,根据人员出行规律预测人流高峰,提前做好疏导预案。
民生政务方面,人脸识别在政务系统的落地,提升了民众的办事效率,公民可以不用窗口排队,实现自助办事,节省了因人工效率低下产生的耗时。部分政务还可以通过在线人脸识别验证,在移动端线上办理,减轻了“办事来回跑、办事地点远、办事点分散”的困扰。
智能家居方面,主要应用在安全解锁和个性化家居服务两个场景。
在线教育领域则是通过人脸识别查验学员身份,避免一账号多个人使用,给网校造成损失,另一用途是帮助在线课堂老师了解学生学习状态,弥补网络授课相较于传统授课在师生交流环节上的不足。
商业领域,利用人脸识别功能实现各种极具创意的互动营销活动。
凡事都有两面。即便拥有以上优势,因人脸暴露度较高,相比对其他生物特征数据更容易实现被动采集,这也意味着人脸信息的数据更容易被窃取,不仅可能侵犯个人隐私,还会带来财产损失。大规模的数据库泄露还会对一个族群或国家带来安全风险。
在南方都市报个人信息保护研究中心发布的《人脸识别应用公众调研报告(2020)》中,其对两万份调研报告进行统计,问卷中就“便捷性”与“安全性”设置了量表题,请受访者分别依据前述10大类场景中的使用感受进行打分。
1分为最低分,5分为最高分。结果显示,在安全性感受方面,受访者给出的分数则明显偏低,体现出他们对安全风险的忧虑态度。
以上就是关于调百度人脸识别的ai怎么一次返回多个想要的结果, 年龄,性别,种族,情绪全部的内容,包括:调百度人脸识别的ai怎么一次返回多个想要的结果, 年龄,性别,种族,情绪、caffe训练好人脸识别模型,怎么在LFW上验证识别率_人脸识别模型训练是什么意思、人脸识别技术有哪些优势呢等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)