本质上其实是同一个概念,spring的事务是对数据库的事务的封装,最后本质的实现还是在数据库,假如数据库不支持事务的话,spring的事务是没有作用的数据库的事务说简单就只有开启,回滚和关闭,spring对数据库事务的包装,原理就是拿一个数据连接,根据spring的事务配置, *** 作这个数据连接对数据库进行事务开启,回滚或关闭 *** 作但是spring除了实现这些,还配合spring的传播行为对事务进行了更广泛的管理其实这里还有个重要的点,那就是事务中涉及的隔离级别,以及spring如何对数据库的隔离级别进行封装事务与隔离级别放在一起理解会更好些以上回答希望能帮助到你
一个大型、稳健、成熟的分布式系统的背后,往往会涉及众多的支撑系统,我们将这些支撑系统称为分布式系统的基础设施。除了前面所介绍的分布式协作及配置管理系统ZooKeeper,我们进行系统架构设计所依赖的基础设施,还包括分布式缓存系统、持久化存储、分布式消息系统、搜索引擎,以及CDN系统、负载均衡系统、运维自动化系统等,还有后面章节所要介绍的实时计算系统、离线计算系统、分布式文件系统、日志收集系统、监控系统、数据仓库等。
分布式缓存主要用于在高并发环境下,减轻数据库的压力,提高系统的响应速度和并发吞吐。当大量的读、写请求涌向数据库时,磁盘的处理速度与内存显然不在一个量级,因此,在数据库之前加一层缓存,能够显著提高系统的响应速度,并降低数据库的压力。作为传统的关系型数据库,MySQL提供完整的ACID *** 作,支持丰富的数据类型、强大的关联查询、where语句等,能够非常客易地建立查询索引,执行复杂的内连接、外连接、求和、排序、分组等 *** 作,并且支持存储过程、函数等功能,产品成熟度高,功能强大。但是,对于需要应对高并发访问并且存储海量数据的场景来说,出于对性能的考虑,不得不放弃很多传统关系型数据库原本强大的功能,牺牲了系统的易用性,并且使得系统的设计和管理变得更为复杂。这也使得在过去几年中,流行着另一种新的存储解决方案——NoSQL,它与传统的关系型数据库最大的差别在于,它不使用SQL作为查询语言来查找数据,而采用key-value形式进行查找,提供了更高的查询效率及吞吐,并且能够更加方便地进行扩展,存储海量数据,在数千个节点上进行分区,自动进行数据的复制和备份。在分布式系统中,消息作为应用间通信的一种方式,得到了十分广泛的应用。消息可以被保存在队列中,直到被接收者取出,由于消息发送者不需要同步等待消息接收者的响应,消息的异步接收降低了系统集成的耦合度,提升了分布式系统协作的效率,使得系统能够更快地响应用户,提供更高的吞吐。
当系统处于峰值压力时,分布式消息队列还能够作为缓冲,削峰填谷,缓解集群的压力,避免整个系统被压垮。垂直化的搜索引擎在分布式系统中是一个非常重要的角色,它既能够满足用户对于全文检索、模糊匹配的需求,解决数据库like查询效率低下的问题,又能够解决分布式环境下,由于采用分库分表,或者使用NoSQL数据库,导致无法进行多表关联或者进行复杂查询的问题。
数据库事务是指作为单个逻辑工作单元执行的一系列 *** 作。设想网上购物的一次交易,其付款过程至少包括以下几步数据库 *** 作:· 更新客户所购商品的库存信息· 保存客户付款信息--可能包括与银行系统的交互· 生成订单并且保存到数据库中· 更新用户相关信息,例如购物数量等等正常的情况下,这些 *** 作将顺利进行,最终交易成功,与交易相关的所有数据库信息也成功地更新。但是,如果在这一系列过程中任何一个环节出了差错,例如在更新商品库存信息时发生异常、该顾客银行帐户存款不足等,都将导致交易失败。一旦交易失败,数据库中所有信息都必须保持交易前的状态不变,比如最后一步更新用户信息时失败而导致交易失败,那么必须保证这笔失败的交易不影响数据库的状态--库存信息没有被更新、用户也没有付款,订单也没有生成。否则,数据库的信息将会一片混乱而不可预测。数据库事务正是用来保证这种情况下交易的平稳性和可预测性的技术。-----------------------------------------------资料: >
事务是作为一个单元的一组有序的数据库 *** 作。如果组中的所有 *** 作都成功, 则认为事务成功,即使只有一个 *** 作失败,事务也不成功。如果所有 *** 作完成,事务则提交,其修改将作用于所有其他数据库进程。如果一个 *** 作失败,则事务将回滚,该事务所有 *** 作的影响都将取消。
这就是数据库中的事务了,关于数据库的更多知识,推荐你看黑马程序员视频库的视频,能学到很多知识哦!
回答的有点多请耐心看完。
希望能帮助你还请及时采纳谢谢
1事务的原理
事务就是将一组SQL语句放在同一批次内去执行,如果一个SQL语句出错,则该批次内的所有SQL都将被取消执行。MySQL事务处理只支持InnoDB和BDB数据表类型。
1事务的ACID原则
1(Atomicity)原子性: 事务是最小的执行单位,不允许分割。原子性确保动作要么全部完成,要么完全不起作用;
2(Consistency)一致性: 执行事务前后,数据保持一致;
3(Isolation)隔离性: 并发访问数据库时,一个事务不被其他事务所干扰。
4(Durability)持久性: 一个事务被提交之后。对数据库中数据的改变是持久的,即使数据库发生故障。
1缓冲池(Buffer Pool)
Buffer Pool中包含了磁盘中部分数据页的映射。当从数据库读取数据时,会先从Buffer Pool中读取数据,如果Buffer Pool中没有,则从磁盘读取后放入到Buffer Pool中。当向数据库写入数据时,会先写入到Buffer Pool中,Buffer Pool中更新的数据会定期刷新到磁盘中(此过程称为刷脏)。
2日志缓冲区(Log Buffer)
当在MySQL中对InnoDB表进行更改时,这些更改命令首先存储在InnoDB日志缓冲区(Log Buffer)的内存中,然后写入通常称为重做日志(redo logs)的InnoDB日志文件中。
3双写机制缓存(DoubleWrite Buffer)
Doublewrite Buffer是共享表空间的物理文件的 buffer,其大小是2MB是一个一分为二的2MB空间。
刷脏 *** 作开始之时,先进行脏页‘备份’ *** 作将脏页数据写入 Doublewrite Buffer
将Doublewrite Buffer(顺序IO)写入磁盘文件中(共享表空间) 进行刷脏 *** 作
4回滚日志(Undo Log)
Undo Log记录的是逻辑日志记录的是事务过程中每条数据的变化版本和情况
在Innodb 磁盘架构中Undo Log 默认是共享表空间的物理文件的Buffer
在事务异常中断,或者主动(Rollback)回滚的过程中 ,Innodb基于 Undo Log进行数据撤销回滚,保证数据回归至事务开始状态
5重做日志(Redo Log)
Redo Log通常指的是物理日志,记录的是数据页的物理修改并不记录行记录情况。(也就是只记录要做哪些修改,并不记录修改的完成情况) 当数据库宕机重启的时候,会将重做日志中的内容恢复到数据库中。
1原子性
Innodb事务的原子性保证,包含事务的提交机制和事务的回滚机制在Innodb引擎中事务的回滚机制是依托 回滚日志(Undo Log) 进行回滚数据,保证数据回归至事务开始状态
2那么不同的隔离级别,隔离性是如何实现的,为什么不同事物间能够互不干扰? 答案是 锁 和 MVCC。
3持久性
基于事务的提交机制流程有可能出现三种场景
1 数据刷脏正常一切正常提交,Redo Log 循环记录数据成功落盘持久性得以保证
2数据刷脏的过程中出现的系统意外导致页断裂现象 (部分刷脏成功),针对页断裂情况,采用Double write机制进行保证页断裂数据的恢复
3数据未出现页断裂现象,也没有刷脏成功,MySQL通过Redo Log 进行数据的持久化即可
4一致性
从数据库层面,数据库通过原子性、隔离性、持久性来保证一致性
2事务的隔离级别
Mysql 默认采用的 REPEATABLE_READ隔离级别 Oracle 默认采用的 READ_COMMITTED隔离级别
脏读: 指一个事务读取了另外一个事务未提交的数据。
不可重复读: 在一个事务内读取表中的某一行数据,多次读取结果不同
虚读(幻读): 是指在一个事务内读取到了别的事务插入的数据,导致前后读取不一致。
2基本语法
-- 使用set语句来改变自动提交模式
SET autocommit = 0; /关闭/
SET autocommit = 1; /开启/
-- 注意:
--- 1MySQL中默认是自动提交
--- 2使用事务时应先关闭自动提交
-- 开始一个事务,标记事务的起始点
START TRANSACTION
-- 提交一个事务给数据库
COMMIT
-- 将事务回滚,数据回到本次事务的初始状态
ROLLBACK
-- 还原MySQL数据库的自动提交
SET autocommit =1;
-- 保存点
SAVEPOINT 保存点名称 -- 设置一个事务保存点
ROLLBACK TO SAVEPOINT 保存点名称 -- 回滚到保存点
RELEASE SAVEPOINT 保存点名称 -- 删除保存点
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/
课堂测试题目
A在线买一款价格为500元商品,网上银行转账
A的yhk余额为2000,然后给商家B支付500
商家B一开始的yhk余额为10000
创建数据库shop和创建表account并插入2条数据
/
CREATE DATABASE `shop`CHARACTER SET utf8 COLLATE utf8_general_ci;
USE `shop`;
CREATE TABLE `account` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`name` VARCHAR(32) NOT NULL,
`cash` DECIMAL(9,2) NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=INNODB DEFAULT CHARSET=utf8
INSERT INTO account (`name`,`cash`)
VALUES('A',200000),('B',1000000)
-- 转账实现
SET autocommit = 0; -- 关闭自动提交
START TRANSACTION; -- 开始一个事务,标记事务的起始点
UPDATE account SET cash=cash-500 WHERE `name`='A';
UPDATE account SET cash=cash+500 WHERE `name`='B';
COMMIT; -- 提交事务
# rollback;
SET autocommit = 1; -- 恢复自动提交
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
3事务实现方式-MVCC
1什么是MVCC
MVCC是mysql的的多版本并发控制即multi-Version Concurrency Controller,mysql的innodb引擎支持MVVC。MVCC是为了实现事务的隔离性,通过版本号,避免同一数据在不同事务间的竞争,你可以把它当成基于多版本号的一种乐观锁。当然,这种乐观锁只在事务级别为RR(可重复读)和RC(读提交)生效。MVCC最大的好处,相信也是耳熟能详:读不加锁,读写不冲突,极大的增加了系统的并发性能。
2MVCC的实现机制
InnoDB在每行数据都增加两个隐藏字段,一个记录创建的版本号,一个记录删除的版本号。
在多版本并发控制中,为了保证数据 *** 作在多线程过程中,保证事务隔离的机制,降低锁竞争的压力,保证较高的并发量。在每开启一个事务时,会生成一个事务的版本号,被 *** 作的数据会生成一条新的数据行(临时),但是在提交前对其他事务是不可见的;对于数据的更新(包括增删改) *** 作成功,会将这个版本号更新到数据的行中;事务提交成功,新的版本号也就更新到了此数据行中。这样保证了每个事务 *** 作的数据,都是互不影响的,也不存在锁的问题。
3MVCC下的CRUD
SELECT:
当隔离级别是REPEATABLE READ时select *** 作,InnoDB每行数据来保证它符合两个条件:
1 事务的版本号 大于等于 创建行版本号
2 行数据的删除版本 未定义 或者大于 事务版本号
行创建版本号 事务版本号 行删除版本号
INSERT:
InnoDB为这个新行 记录 当前的系统版本号。
DELETE:
InnoDB将当前的系统版本号 设置为 这一行的删除版本号。
UPDATE:
InnoDB会写一个这行数据的新拷贝,这个拷贝的版本为 当前的系统版本号。它同时也会将这个版本号 写到 旧行的删除版本里。
————————————————
版权声明:本文为CSDN博主「@Autowire」的原创文章,遵循CC 40 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:>
以上就是关于spring事务和数据库数据库事务的区别全部的内容,包括:spring事务和数据库数据库事务的区别、数据库事务使用方法、数据库中的事务是什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)