hadoop的hdfs支持海量数据量存储 mapreduce支持对海量数据的分布式处理
oracle虽然可以搭建集群 但是当数据量达到一定限度之后查询处理速度会变得很慢 且对机器性能要求很高
其实这两个东西不是同类 hadoop是一个分布式云处理架构,倾向于数据计算 而oracle是一个关系型数据库,倾向于数据存储。要说比较可以比较hbase与oracle。
hbase是一种nosql数据库,列式数据库,支持海量数据存储,支持列的扩展,但是查询 *** 作较复杂,不如oracle这类关系型数据库简单,且只支持一个索引,但是Hbase在表结构设置合理情况下,查询速度跟数据量大小没有太大关系,即数据量的大小不会影响到查询速度,顺便说句Hbase查询速度可以达到ms级
现在大数据是一个十分火热的技术,这也使得很多人都开始关注大数据的任何动态,因为大数据在某种程度上来说能够影响我们的生活。在这篇文章中我们就给大家介绍一下大数据的分布式数据库的发展趋势,希望这篇文章能够帮助大家更好理解大数据的分布式数据库的发展趋势。
其实不论是Hadoop还是分布式数据库,技术体系上两者都已经向着计算存储层分离的方式演进。对于Hadoop来说这一趋势非常明显,HDFS存储与YARN调度计算的分离,使得计算与存储均可以按需横向扩展。而分布式数据库近年来也在遵循类似的趋势,很多数据库已经将底层存储与上层的SQL引擎进行剥离。传统的XML数据库、OO数据库、与pre-RDBMS正在消亡;新兴领域文档类数据库、图数据库、Table-Style数据库与Multi-Model数据库正在扩大自身影响;传统关系型数据库、列存储数据库、内存分析型数据库正在考虑转型。可以看到,从技术完整性与成熟度来看,Hadoop确实还处于相对早期的形态。直到今天,很多技术在很多企业应用中需要大量的手工调优才能够勉强运行。同时,Hadoop的主要应用场景一直以来面向批处理分析型业务,传统数据库在线联机处理部分不是其主要的发展方向。同时Hadoop技术由于开源生态体系过于庞大,同时参与改造的厂商太多,使得用户很难完全熟悉整个体系,这一方面大大增加了开发的复杂度,提升了用户使用的难度,另一方面则是各个厂商之间维护不同版本,使得产品的发展方向可能与开源版本差别逐渐加大。
而分布式数据库领域经历了几十年的磨练,传统RDBMS的MPP技术早已经炉火纯青,在分类众多的分布式数据库中,其主要发展方向基本可以分为“分布式联机数据库”与“分布式分析型数据库”两种。对比Hadoop与分布式数据库可以看出,Hadoop的产品发展方向定位,与分布式数据库中列存储数据库相当重叠而在高并发联机交易场景,在Hadoop中除了HBase能够勉强沾边以外,分布式数据库则占据绝对的优势。目前,从Hadoop行业的发展来看,很多厂商而是将其定位改变为数据科学与机器学习服务商。因此,从商业模式上看以Hadoop分销的商业模式基本已经宣告结束,用户已经体验到维护整个Hadoop平台的困难而不愿被强迫购买整个平台。大量用户更愿意把原来Hadoop的部件拆开灵活使用,为使用场景和结果买单,而非平台本身买单。另外一个细分市场——非结构化小文件存储,一直以来都是对象存储、块存储,与分布式文件系统的主战场。如今,一些新一代数据库也开始进入该领域,可以预见在未来的几年中,小型非结构化文件存储也可能成为具备多模数据处理能力的分布式数据库的战场之一。
我们在这篇文章中给大家介绍了很多有关大数据分布数据库的发展前景,通过这篇文章我们不难发现数据库的发展是一个极其重要的内容,只有搭建分布式数据库,大数据才能够更好地为我们服务。
以上就是关于hadoop与传统的关系型数据库(如oracle)相比,有什么优势及劣势全部的内容,包括:hadoop与传统的关系型数据库(如oracle)相比,有什么优势及劣势、大数据的分布式数据库的发展趋势如何(分布式数据库的优点)、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)