考研方向主要集中在:计算机技术、计算机应用技术、计算机科学与技术、工商管理。
计算机技术是(专业硕士)工程下的二级学科专业。计算机技术领域重点研究得是如何扩展计算机系统的功能和发挥计算机系统在各学科、各类工程、人类生活和工作中的作用。
计算机应用技术是计算机科学与技术专业下设的一个二级学科,是一应用十分广泛的专业,它以计算机基本理论为基础,突出计算机和网络的实际应用。
就业方向计算机科学与技术培养具有良好的道德与修养,遵守法律法规,具有社会和环境意识,掌握数学与自然科学基础知识以及与计算系统相关的基本理论、基本知识、基本技能和基本方法。
该专业毕业生就业面宽、就业前景可观,能够在网络通信类科研院所、政府机构、银行、电力企业、计算机网络公司、通信公司等各类企事业单位从事计算机网络的科学研究、系统设计、系统防护、系统管理与维护和应用计算机科学与技术学科的系统开发、设计和系统集成等工作。
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中,大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法)大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、veracity(真实性)。大数据需要特殊的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、、地理位置信息等等。第三,数据的来源,直接导致分析结果的准确性和真实性。若数据来源是完整的并且真实,最终的分析结果以及决定将更加准确。第四,处理速度快,1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”
从某种程度上说,大数据是数据分析的前沿技术。简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。
搜索下各种百科,上面都有。说白了,就是数据量非常庞大。这确实是近几年的热点问题。
数据分析和数据挖掘都是从数据库中发现知识、所以我们称数据分析和数据挖掘叫做数据库中的知识发现。但严格意义上来讲,数据挖掘才是真正意义上的数据库中的知识发现(Knowledge Discovery in Database,KDD)。
数据分析是从数据库中通过统计、计算、抽样等相关的方法,获取基于数据库的数据表象的知识,也就是指数据分析是从数据库里面得到一些表象性的信息。数据挖掘是从数据库中,通过机器学习或者是通过数学算法等相关的方法获取深层次的知识(比如属性之间的规律性,或者是预测)的技术。
数据挖掘是从大量的数据中,抽取出潜在的、有价值的知识(模型或规则)的过程。
1数据挖掘能做什么
1)数据挖掘能做以下六种不同事情(分析方法):
分类()
估值(Estimation)
预言(Prediction)
相关性分组或关联规则(Affinitygroupingorassociationrules)
聚集(Clustering)
描述和可视化(Descriptionand)
2)数据挖掘分类
以上六种数据挖掘的分析方法可以分为两类:直接数据挖掘;间接数据挖掘
直接数据挖掘
目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以
理解成数据库中表的属性,即列)进行描述。
间接数据挖掘
目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系
分类、估值、预言属于直接数据挖掘;后三种属于间接数据挖掘
3)各种分析方法的简介
分类()
首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分
类模型,对于没有分类的数据进行分类。
例子:
axyk申请者,分类为低、中、高风险
b分配客户到预先定义的客户分片
注意:类的个数是确定的,预先定义好的
估值(Estimation)
估值与分类类似,不同之处在于,分类描述的是离散型变量的输出,而估值处理连续值的
输出;分类的类别是确定数目的,估值的量是不确定的。
例子:
a根据购买模式,估计一个家庭的孩子个数
b根据购买模式,估计一个家庭的收入
c估计realestate的价值
一般来说,估值可以作为分类的前一步工作。给定一些输入数据,通过估值,得到未知的
连续变量的值,然后,根据预先设定的阈值,进行分类。例如:银行对家庭贷款业务,运
用估值,给各个客户记分(Score0~1)。然后,根据阈值,将贷款级别分类。
预言(Prediction)
通常,预言是通过分类或估值起作用的,也就是说,通过分类或估值得出模型,该模型用
于对未知变量的预言。从这种意义上说,预言其实没有必要分为一个单独的类。
预言其目的是对未来未知变量的预测,这种预测是需要时间来验证的,即必须经过一定时
间后,才知道预言准确性是多少。
相关性分组或关联规则(Affinitygroupingorassociationrules)
决定哪些事情将一起发生。
例子:
a超市中客户在购买A的同时,经常会购买B,即A=>B(关联规则)
b客户在购买A后,隔一段时间,会购买B(序列分析)
聚集(Clustering)
聚集是对记录分组,把相似的记录在一个聚集里。聚集和分类的区别是聚集不依赖于预先
定义好的类,不需要训练集。
例子:
a一些特定症状的聚集可能预示了一个特定的疾病
b租VCD类型不相似的客户聚集,可能暗示成员属于不同的亚文化群
聚集通常作为数据挖掘的第一步。例如,"哪一种类的促销对客户响应最好?",对于这一
类问题,首先对整个客户做聚集,将客户分组在各自的聚集里,然后对每个不同的聚集,回答问题,可能效果更好。
描述和可视化(Descriptionand)
是对数据挖掘结果的表示方式。
2数据挖掘的商业背景
数据挖掘首先是需要商业环境中收集了大量的数据,然后要求挖掘的知识是有价值的。有
价值对商业而言,不外乎三种情况:降低开销;提高收入;增加股票价格。
1)数据挖掘作为研究工具(Research)
2)数据挖掘提高过程控制(ProcessImprovement)
3)数据挖掘作为市场营销工具(Marketing)
4)数据挖掘作为客户关系管理CRM工具(CustomerManagement)
3数据挖掘的技术背景
1)数据挖掘技术包括三个主要部分:算法和技术;数据;建模能力
2)数据挖掘和机器学习(MachineLearning)
机器学习是计算机科学和人工智能AI发展的产物
机器学习分为两种学习方式:自组织学习(如神经网络);从例子中归纳出规则(如决
策树)
数据挖掘由来
数据挖掘是八十年代,投资AI研究项目失败后,AI转入实际应用时提出的。它是一个新兴
的,面向商业应用的AI研究。选择数据挖掘这一术语,表明了与统计、精算、长期从事预
言模型的经济学家之间没有技术的重叠。
3)数据挖掘和统计
统计也开始支持数据挖掘。统计本包括预言算法(回归)、抽样、基于经验的设计等
4)数据挖掘和决策支持系统
数据仓库
OLAP(联机分析处理)、DataMart(数据集市)、多维数据库
决策支持工具融合
将数据仓库、OLAP,数据挖掘融合在一起,构成企业决策分析环境。
4数据挖掘的社会背景
数据挖掘与个人预言:数据挖掘号称能通过历史数据的分析,预测客户的行为,而事实上
客户自己可能都不明确自己下一步要作什么。所以,数据挖掘的结果,没有人们想象中
神秘,它不可能是完全正确的。
客户的行为是与社会环境相关连的,所以数据挖掘本身也受社会背景的影响。比如说,在
美国对银行xyk客户信用评级的模型运行得非常成功,但是,它可能不适合中国
以上就是关于计算机科学与技术考研的方向有哪些全部的内容,包括:计算机科学与技术考研的方向有哪些、什么是大数据,什么又是数据挖掘、数据分析和数据挖掘的区别是什么如何做好数据挖掘等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)