具体问题具体分析,举例来说明为什么磁盘IO成瓶颈数据库的性能急速下降了。
为什么当磁盘IO成瓶颈之后, 数据库的性能不是达到饱和的平衡状态,而是急剧下降。为什么数据库的性能有非常明显的分界点,原因是什么?
相信大部分做数据库运维的朋友,都遇到这种情况。 数据库在前一天性能表现的相当稳定,数据库的响应时间也很正常,但就在今天,在业务人员反馈业务流量没有任何上升的情况下,数据库的变得不稳定了,有时候一个最简单的insert *** 作, 需要几十秒,但99%的insert却又可以在几毫秒完成,这又是为什么了?
dba此时心中有无限的疑惑,到底是什么原因呢 磁盘IO性能变差了?还是业务运维人员反馈的流量压根就不对? 还是数据库内部出问题?昨天不是还好好的吗?
当数据库出现响应时间不稳定的时候,我们在 *** 作系统上会看到磁盘的利用率会比较高,如果观察仔细一点,还可以看到,存在一些读的IO 数据库服务器如果存在大量的写IO,性能一般都是正常跟稳定的,但只要存在少量的读IO,则性能开始出现抖动,存在大量的读IO时(排除配备非常高速磁盘的机器),对于在线交易的数据库系统来说,大概性能就雪崩了。为什么 *** 作系统上看到的磁盘读IO跟写IO所带来的性能差距这么大呢?
如果亲之前没有注意到上述的现象,亲对上述的结论也是怀疑。但请看下面的分解。
在写这个文章之前,作者阅读了大量跟的IO相关的代码,如异步IO线程的相关的,innodb_buffer池相关的,以及跟读数据块最相关的核心函数buf_page_get_gen函数以及其调用的相关子函数。为了将文章写得通俗点,看起来不那么累,因此不再一行一行的将代码解析写出来。
咱们先来提问题。 buf_page_get_gen函数的作用是从Buffer bool里面读数据页,可能存在以下几种情况。
提问 数据页不在buffer bool 里面该怎么办?
回答:去读文件,将文件中的数据页加载到buffer pool里面。下面是函数buffer_read_page的函数,作用是将物理数据页加载到buffer pool, 中显示
buffer_read_page函数栈的顶层是pread64(),调用了 *** 作系统的读函数。
buf_read_page的代码
如果去读文件,则需要等待物理读IO的完成,如果此时IO没有及时响应,则存在堵塞。这是一个同步读的 *** 作,如果不完成该线程无法继续后续的步骤。因为需要的数据页不再buffer 中,无法直接使用该数据页,必须等待 *** 作系统完成IO
再接着上面的回答提问:
当第二会话线程执行sql的时候,也需要去访问相同的数据页,它是等待上面的线程将这个数据页读入到缓存中,还是自己再发起一个读磁盘的然后加载到buffer的请求呢? 代码告诉我们,是前者,等待第一个请求该数据页的线程读入buffer pool。
试想一下,如果第一个请求该数据页的线程因为磁盘IO瓶颈,迟迟没有将物理数据页读入buffer pool, 这个时间区间拖得越长,则造成等待该数据块的用户线程就越多。对高并发的系统来说,将造成大量的等待。 等待数据页读入的函数是buf_wait_for_read,下面是该函数相关的栈。
通过解析buf_wait_for_read函数的下层函数,我们知道其实通过首先自旋加锁pin的方式,超过设定的自旋次数之后,进入等待,等待IO完成被唤醒。这样节省不停自旋pin时消耗的cpu,但需要付出被唤起时的开销。
再继续扩展问题: 如果会话线程A 经过物理IO将数据页1001读入buffer之后,他需要修改这个页,而在会话线程A之后的其他的同样需要访问数据页1001的会话线程,即使在数据页1001被入读buffer pool之后,将仍然处于等待中。因为在数据页上读取或者更新的时候,同样需要上锁,这样才能保证数据页并发读取/更新的一致性。
由此可见,当一个高并发的系统,出现了热点数据页需要从磁盘上加载到buffer pool中时,造成的延迟,是难以想象的。因此排在等待热点页队列最后的会话线程最后才得到需要的页,响应时间也就越长,这就是造成了一个简单的sql需要执行几十秒的原因。
再回头来看上面的问题,mysql数据库出现性能下降时,可以看到 *** 作系统有读IO。 原因是,在数据库对数据页的更改,是在内存中的,然后通过检查点线程进行异步写盘,这个异步的写 *** 作是不堵塞执行sql的会话线程的。所以,即使看到 *** 作系统上有大量的写IO,数据库的性能也是很平稳的。但当用户线程需要查找的数据页不在buffer pool中时,则会从磁盘上读取,在一个热点数据页不是非常多的情况下,我们设置足够大的innodb_buffer_pool的size, 基本可以缓存所有的数据页,因此一般都不会出现缺页的情况,也就是在 *** 作系统上基本看不到读的IO。 当出现读的IO时,原因时在执行buf_read_page_low函数,从磁盘上读取数据页到buffer pool, 则数据库的性能则开始下降,当出现大量的读IO,数据库的性能会非常差。
1
首先打开Access数据库,单击“数据库工具”菜单中的“分析性能”项,d出“性能分析器”窗口。
2
在d出的“性能分析器”窗口中,默认为“表”选择框。通常选择对全部表进行性能分析,点击“全选”,所有表前面的复选框被勾选中,点“确定”开始分析。
3
如果分析后,d出提示框显示“性能分析没有改进所选对象的建议”,说明没有必要对当前数据库性能进行优化,无须进行后续步骤;
否则,会d出分析结果窗口:列表中每一项前面都有一个符号,每个符号都代表一个含义,在这个对话框中都有介绍。如果在列表框中有“推荐”和“建议”,我们
就点击“全选”按钮,这时在列表框中的全部项都被选中。然后点击“优化”按钮,等一会儿,会发现原来的“推荐”和“建议”项都变成了“更正”项,说明已经
将这些问题都解决了。带“灯泡”符号的“意见”项没有变化,当选中其中一个“意见”选项时,在“分析注释”中详细列出Access为解决这个问题所出的意
见。
4
另外,“数据库工具”菜单中的“数据库文档管理器”选项,可以打印出所建数据库各对象的全部信息。点击“数据库文档管理器“,在d出的对话框中点击"全
选",所有表前面的复选框被勾选中。在这个对话框上有一个“选项”按钮,这个按钮是用来确定打印表的定义,让我们单击该按钮,会d出一个对话框。
5
在这个对话框中包含“表含义”、“字段包含”、“索引包含”这三个含义组,选择组中不同的选项,会改变打印表显示的信息内容。当我们完成这些工作,单击“确定”按钮。
6
在d出的打印表中,列出了数据库表各类属性信息,有经验的Access使用者就可以根据这些信息资料分析出所建立的数据库有哪些问题了。
如何提高MySQL Limit查询的性能
在MySQL数据库 *** 作中,我们在做一些查询的时候总希望能避免数据库引擎做全表扫描,因为全表扫描时间长,而且其中大部分扫描对客户端而言是没有意义的。其实我们可以使用Limit关键字来避免全表扫描的情况,从而提高效率。
有个几千万条记录的表 on MySQL 50x,现在要读出其中几十万万条左右的记录。常用方法,依次循环:
select from mytable where index_col = xxx limit offset, limit;
经验:如果没有blob/text字段,单行记录比较小,可以把 limit 设大点,会加快速度。
问题:头几万条读取很快,但是速度呈线性下降,同时 mysql server cpu 99% ,速度不可接受。
调用 explain select from mytable where index_col = xxx limit offset, limit;
显示 type = ALL
在 MySQL optimization 的文档写到"All"的解释
A full table scan is done for each combination of rows from the previous tables This is normally not good if the table is the first table not marked const, and usually very bad in all other cases Normally, you can avoid ALL by adding indexes that allow row retrieval from the table based on constant values or column values from earlier tables
看样子对于 all, mysql 就使用比较笨的方法,那就改用 range 方式? 因为 id 是递增的,也很好修改 sql 。
select from mytable where id > offset and id < offset + limit and index_col = xxx
explain 显示 type = range,结果速度非常理想,返回结果快了几十倍。
Limit语法:
SELECT FROM table LIMIT [offset,] rows | rows OFFSET offset
LIMIT子句可以被用于强制 SELECT 语句返回指定的记录数。LIMIT接受一个或两个数字参数。参数必须是一个整数常量。
如果给定两个参数,第一个参数指定第一个返回记录行的偏移量,第二个参数指定返回记录行的最大数目。初始记录行的偏移量是 0(而不是 1)。
为了与 PostgreSQL 兼容,MySQL 也支持句法:LIMIT # OFFSET #。
mysql> SELECT FROM table LIMIT 5,10; //检索记录行6-15
//为了检索从某一个偏移量到记录集的结束所有的记录行,可以指定第二个参数为-1
mysql> SELECT FROM table LIMIT 95,-1; //检索记录行96-last
//如果只给定一个参数,它表示返回最大的记录行数目,换句话说,LIMIT n 等价于 LIMIT 0,n
mysql> SELECT FROM table LIMIT 5; //检索前5个记录行
MySQL的limit给分页带来了极大的方便,但数据量一大的时候,limit的性能就急剧下降。同样是取10条数据,下面两句就不是一个数量级别的。
select from table limit 10000,10
select from table limit 0,10
文中不是直接使用limit,而是首先获取到offset的id然后直接使用limit size来获取数据。根据他的数据,明显要好于直接使用limit。
这里我具体使用数据分两种情况进行测试。
1、offset比较小的时候:
select from table limit 10,10
//多次运行,时间保持在00004-00005之间
Select From table Where vid >=(Select vid From table Order By vid limit 10,1) limit 10
//多次运行,时间保持在00005-00006之间,主要是00006
结论:偏移offset较小的时候,直接使用limit较优。这个显然是子查询的原因。
2、offset大的时候:
select from table limit 10000,10
//多次运行,时间保持在00187左右
Select From table Where vid >=(Select vid From table Order By vid limit 10000,1) limit 10
//多次运行,时间保持在00061左右,只有前者的1/3。可以预计offset越大,后者越优。
1、使用系统性能监视器监视当前SQL的工作性能(控制面板-->管理工具-->性能)可以查看SQL对磁盘、内存的总体占用
2、使用SQL 性能监视器(SQL Profiler)可以查看SQL 的执行事件,读写次数,起始和结束事件等等,可以保存死锁图形。
选择好的学校要从以下几个方面考虑:仅供参考
1、办学时间长短,像办学时间长的院校,应该靠谱一点。。
2、办学规模,一定要有独立的校园环境,
3、教学水平,这是决定你能不能学到技术的根本,教学水平包括专业设置、师资力量、教学配套设施、项目实训等。
4、就业保障,学校是不是安排工作,是不是有就业指导中心,有多少家用人单位与他们合作过等等。
包括负载测试,强度测试,数据库容量测试,基准测试以及竞争测试。
负载测试,一种性能测试指数据在超负荷环境中运行,程序是否能够承担。在这种测试中,将使测试对象承担不同的工作量,以评测和评估测试对象在不同工作量条件下的性能行为,以及持续正常运行的能力。
对计算机软件进行测试前,首先需遵循软件测试原则,即不完全原则的遵守。不完全原则即为若测试不完全、测试过程中涉及免疫性原则的部分较多,可对软件测试起到一定帮助。
因软件测试因此类因素具有一定程度的免疫性,测试人员能够完成的测试内容与其免疫性成正比,若想使软件测试更为流畅、测试效果更为有效,首先需遵循此类原则,将此类原则贯穿整个开发流程,不断进行测试,而并非一次性全程测试。
限流算法目前程序开发过程常用的限流算法有两个:漏桶算法和令牌桶算法。
漏桶算法
漏桶算法的原理比较简单,请求进入到漏桶中,漏桶以一定的速率漏水。当请求过多时,水直接溢出。可以看出,漏桶算法可以强制限制数据的传输速度。如图所示,把请求比作是水滴,水先滴到桶里,通过漏洞并以限定的速度出水,当水来得过猛而出水不够快时就会导致水直接溢出,即拒绝服务。
来自网络
漏桶的出水速度是恒定的,那么意味着如果瞬时大流量的话,将有大部分请求被丢弃掉(也就是所谓的溢出)。
令牌桶算法
令牌桶算法的原理是系统以一定速率向桶中放入令牌,如果有请求时,请求会从桶中取出令牌,如果能取到令牌,则可以继续完成请求,否则等待或者拒绝服务。这种算法可以应对突发程度的请求,因此比漏桶算法好。
来自网络
漏桶算法和令牌桶算法的选择
两者的主要区别漏桶算法能够强行限制处理数据的速率,不论系统是否空闲。而令牌桶算法能够在限制数据的平均处理速率的同时还允许某种程度的突发流量。如何理解上面的含义呢?漏桶算法,比如系统吞吐量是 120/s,业务请求 130/s,使用漏斗限流 100/s,起到限流的作用,多余的请求将产生等待或者丢弃。对于令牌桶算法,每秒产生 100 个令牌,系统容量 200 个令牌。正常情况下,业务请求 100/s 时,请求能被正常被处理。当有突发流量过来比如 200 个请求时,因为系统容量有 200 个令牌可以同一时刻处理掉这 200 个请求。如果是漏桶算法,则只能处理 100 个请求,其他的请求等待或者被丢弃。
以上就是关于如何处理查找,处理数据库的性能瓶颈全部的内容,包括:如何处理查找,处理数据库的性能瓶颈、怎样对Access数据库进行性能分析、如何查看mysql数据库的性能等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)