虹软人脸SDK的人脸特征怎么保存到数据库

虹软人脸SDK的人脸特征怎么保存到数据库,第1张

特征码是一个二进制字段,一般数据库提供一个二进制字段来存储二进制数据,比如SQL Server中的BINARY,VERBINARY;MYSQL用Blob;Oracle用blob或者bfile。

给你提供几个线索,数据都可以去数据堂下载。

1FERET人脸数据库 -

由FERET项目创建,包含1万多张多姿态和光照的人图像,是人脸识别领域应用最广泛的人脸数据库之一其中的多数人是西方人,每个人所包含的人脸图像的变化比较单一

2CMU-PIE人脸数据库

由美国卡耐基梅隆大学创建,包含68位志愿者的41,368张多姿态,光照和表情的面部图像其中的姿态和光照变化图像也是在严格控制的条件下采集的,目前已经逐渐成为人脸识别领域的一个重要的测试集合

3YALE人脸数据库

由耶鲁大学计算视觉与控制中心创建,包含15位志愿者的165张,包含光照,表情和姿态

的变化

4 YALE人脸数据库B

包含了10个人的5,850幅多姿态,多光照的图像其中的姿态和光照变化的图像都是在严格控制的条件下采集的,主要用于光照和姿态问题的建模与分析由于采集人数较少,该数据库的进一步应用受到了比较大的限制

5 MIT人脸数据库

由麻省理工大学媒体实验室创建,包含16位志愿者的2,592张不同姿态,光照和大小的面部图像

6 ORL人脸数据库

由剑桥大学AT&T实验室创建,包含40人共400张面部图像,部分志愿者的图像包括了姿态,

表情和面部饰物的变化该人脸库在人脸识别研究的早期经常被人们采用,但由于变化模式较少,多数系统的识别率均可以达到90%以上,因此进一步利用的价值已经不大

7 BioID人脸数据库

包含在各种光照和复杂背景下的1521张灰度面部图像,眼睛位置已经被手工标注。

区分不同的人是很多智能系统的必备能力。为实现此目的,一种可能的技术手段是通过对人脸的光学成像来感知人、识别人,即所谓的人脸识别技术。经过几十年的研发积累,特别是近年来深度学习技术的涌现,人脸识别取得了长足的进步,在安防、金融、教育、社保等领域得到了越来越多的应用,成为计算机视觉领域最为成功的分支领域之一。

然而,人脸识别并非完全成熟的技术,离公众期望的全面应用尚有距离,还需要学术界、工业界的共同努力。为此,整个人脸识别社区需要有基准(Baseline)系统,而且基准系统的水平显然会极大影响着该领域的发展水平。可是令人尴尬的是,这个领域迄今尚无一套包括所有技术模块的、完全开源的基准人脸识别系统!我们希望改变现状,因此开源了SeetaFace人脸识别引擎。该引擎由中科院计算所山世光研究员带领的人脸识别研究组研发。代码基于C++实现,且不依赖于任何第三方的库函数,开源协议为BSD-2,可供学术界和工业界免费使用。

SeetaFace人脸识别引擎包括了搭建一套全自动人脸识别系统所需的三个核心模块,即:人脸检测模块(SeetaFace Detection)、面部特征点定位模块(SeetaFace Alignment)以及人脸特征提取与比对模块 (SeetaFace Identification)。

人脸检测模块SeetaFace Detection采用了一种结合传统人造特征与多层感知机(MLP)的级联结构,在FDDB上达到了844%的召回率(100个误检时),并可在单个i7 CPU上实时处理VGA分辨率的图像。面部特征点定位模块SeetaFace Alignment通过级联多个深度模型(栈式自编码网络)来回归5个关键特征点(两眼中心、鼻尖和两个嘴角)的位置,在AFLW数据库上达到state-of-the-art的精度,定位速度在单个i7 CPU上超过200fps。人脸识别模块SeetaFace Identification采用一个9层的卷积神经网络(CNN)来提取人脸特征,在LFW数据库上达到971%的精度(注:采用SeetaFace人脸检测和SeetaFace面部特征点定位作为前端进行全自动识别的情况下),特征提取速度为每图120ms(在单个i7 CPU上)。

给你提供几个线索,数据都可以去数据堂下载。

1FERET人脸数据库-

由FERET项目创建,包含1万多张多姿态和光照的人脸图像,是人脸识别领域应用最广泛的人脸数据库之一其中的多数人是西方人,每个人所包含的人脸图像的变化比较单一

2CMU-PIE人脸数据库

由美国卡耐基梅隆大学创建,包含68位志愿者的41,368张多姿态,光照和表情的面部图像其中的姿态和光照变化图像也是在严格控制的条件下采集的,目前已经逐渐成为人脸识别领域的一个重要的测试集合

3YALE人脸数据库

由耶鲁大学计算视觉与控制中心创建,包含15位志愿者的165张,包含光照,表情和姿态

的变化

4YALE人脸数据库B

包含了10个人的5,850幅多姿态,多光照的图像其中的姿态和光照变化的图像都是在严格控制的条件下采集的,主要用于光照和姿态问题的建模与分析由于采集人数较少,该数据库的进一步应用受到了比较大的限制

5MIT人脸数据库

由麻省理工大学媒体实验室创建,包含16位志愿者的2,592张不同姿态,光照和大小的面部图像

6ORL人脸数据库

由剑桥大学AT&T实验室创建,包含40人共400张面部图像,部分志愿者的图像包括了姿态,表情和面部饰物的变化该人脸库在人脸识别研究的早期经常被人们采用,但由于变化模式较少,多数系统的识别率均可以达到90%以上,因此进一步利用的价值已经不大

7BioID人脸数据库

包含在各种光照和复杂背景下的1521张灰度面部图像,眼睛位置已经被手工标注。

以上就是关于虹软人脸SDK的人脸特征怎么保存到数据库全部的内容,包括:虹软人脸SDK的人脸特征怎么保存到数据库、常用的人脸识别数据库有哪些去哪里找,最好免费。、什么是 SeetaFace 开源人脸识别引擎等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10159276.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-05
下一篇 2023-05-05

发表评论

登录后才能评论

评论列表(0条)

保存