在物联网应用系统中使用NoSQL数据库是一个不错的选择,因为NoSQL数据库可以处理海量、多变的数据,并且拥有优秀的横向扩展性。以下是适合物联网应用系统的几种NoSQL数据库类型:
1 文档型数据库:文档型数据库支持存储和查询结构化和非结构化数据,并且能够轻松地存储和检索复杂的数据类型,例如JSON和XML格式。在物联网应用程序中,文档型数据库可以快速存储传感器数据、日志、警报和配置数据等信息。
2 列族型数据库:列族型数据库适用于需要处理大量数据的应用程序,例如数据聚合和时间序列数据分析。在物联网应用程序中,使用列族型数据库可以存储和查询大量时间序列数据,例如传感器读数、状态数据和其他一些深度数据等信息。
3 Key-Value型数据库:Key-Value型数据库是一种简单易用的NoSQL数据库,每个键都关联着一个值。在物联网应用程序中,使用Key-Value型数据库可以存储和查询对象的属性,以及配置数据和元数据等信息。
以上是应用于物联网应用系统中的几种NoSQL数据库类型,也可以根据应用需求和数据类型选择其他适合的NoSQL数据库类型。
数据分析工具靠不靠谱,来试试Smartbi
Excel也存在一些问题,长期困扰一线业务用户:
1首先是性能问题。对于大数据量,Excel处理起来很慢,甚至超过100万行,就完全不支持。
2数据获取的过程麻烦。特别是周期性的数据获取,每次都要找IT人员帮忙,再粘贴到excel中去。
3共享的安全性和便利性问题。用户大都是把Excel文件通过邮件或即时通讯软件共享。首先,文件满天飞,不好管理;其次,权限不好控制,没法做到只共享分析结果,而不共享明细数据;最后,数据没法做到每个人的数据不同,根据用户权限动态更新数据。
Smartbi Excel分析就是面向Excel用户的数据分析工具,它结合了Excel的优点,解决了Excel的问题,真正做到赋能企业一线业务用户,让人人都是自助分析师,促进企业的全民数字化运营。
Smartbi Excel分析的功能亮点
1支持Excel直连数据库,数据准备自己搞定
2支持使用Excel计算公式对线上线下数据做联合分析
3支持使用Excel图形、数据透视表来分析和展现数据
4支持模板和数据分离,重用分析模板,动态更新数据
5支持对Excel中的数据进行二次加工,告别依赖于IT人员处理的困境
6支持超大数据量处理,支持在个人Excel端运算,也支持在服务器(集群)运算
7支持全面的权限管控,提供细粒度的权限控制,精确控制每一个用户的数据权限
思迈特软件Smartbi经过多年持续自主研发,凝聚大量商业智能最佳实践经验,整合了各行业的数据分析和决策支持的功能需求。满足最终用户在企业级报表、数据可视化分析、自助探索分析、数据挖掘建模、AI智能分析等大数据分析需求。
思迈特软件Smartbi个人用户全功能模块长期免费试用
马上免费体验:Smartbi一站式大数据分析平台
OLTP(on-linetransactionprocessing)翻译为联机事务处理。OLAP(On-LineAnalyticalProcessing)翻译为联机分析处理。
OLTP主要用来记录某类业务事件的发生,如购买行为,当行为产生后,系统会记录是谁在何时何地做了何事,这样的一行(或多行)数据会以增删改的方式在数据库中进行数据的更新处理 *** 作,要求实时性高、稳定性强、确保数据及时更新成功,像公司常见的业务系统如ERP,CRM,OA等系统都属于OLTP。
当数据积累到一定的程度,我们需要对过去发生的事情做一个总结分析时,就需要把过去一段时间内产生的数据拿出来进行统计分析,从中获取我们想要的信息,为公司做决策提供支持,这时候就是在做OLAP了。
因为OLTP所产生的业务数据分散在不同的业务系统中,而OLAP往往需要将不同的业务数据集中到一起进行统一综合的分析,这时候就需要根据业务分析需求做对应的数据清洗后存储在数据仓库中,然后由数据仓库来统一提供OLAP分析。所以我们常说OLTP是数据库的应用,OLAP是数据仓库的应用,下面用一张图来简要对比。
数据仓库,英文名称为 Data Warehouse,可简写为 DW 或 DWH。数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它是单个数据存储,出于分析性报告和决策支持目的而创建。 为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。
数据仓库是决策支持系统(dss)和联机分析应用数据源的结构化数据环境。数据仓库研究和解决从数据库中获取信息的问题。数据仓库的特征在于面向主题、集成性、稳定性和时变性。
数据仓库 ,由数据仓库之父比尔·恩门(Bill Inmon)于 1990 年提出,主要功能仍是将组织透过资讯系统之联机事务处理(OLTP)经年累月所累积的大量资料,透过数据仓库理论所特有的资料储存架构,做有系统的分析整理,以利各种分析方法如联机分析处理(OLAP)、数据挖掘(Data Mining)之进行,并进而支持如决策支持系统(DSS)、主管资讯系统(EIS)之创建,帮助决策者能快速有效的自大量资料中,分析出有价值的资讯,以利决策拟定及快速回应外在环境变动,帮助建构商业智能(BI)。
数据仓库之父比尔·恩门(Bill Inmon)在 1991 年出版的“Building the Data Warehouse”(《建立数据仓库》)一书中所提出的定义被广泛接受——数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策(Decision Making Support)。
1、数据仓库是面向主题的; *** 作型数据库的数据组织面向事务处理任务,而数据仓库中的数据是按照一定的主题与进行组织。主题是指用户使用数据仓库进行决策时所关心的重点方面,一个主题通常与多个 *** 作性信息系统相关。
2、数据仓库是集成的,数据仓库的数据有来自于分散的 *** 作型数据,将所需数据从原来的数据中抽取出来,进行加工与集成,统一与综合之后才能进入数据仓库;
数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。
数据仓库的数据主要供企业决策分析之用,所涉及的数据 *** 作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询 *** 作,但修改和删除 *** 作很少,通常只需要定期的加载、刷新。
数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到当前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。
3、数据仓库是不可更新的,数据仓库主要是为决策分析提供数据,所涉及的 *** 作主要是数据的查询;
4、数据仓库是随时间而变化的,传统的关系数据库系统比较适合处理格式化的数据,能够较好地满足商业商务处理的需求。稳定的数据以只读格式保存,且不随时间改变。
5、汇总的。 *** 作性数据映射成决策可用的格式。
6、大容量。时间序列数据集合通常都非常大。
7、非规范化的。Dw 数据可以是而且经常是冗余的。
8、元数据。将描述数据的数据保存起来。
9、数据源。数据来自内部的和外部的非集成 *** 作系统。
以上就是关于什么类型的nosql数据库比较适合应用在物联网应用系统中全部的内容,包括:什么类型的nosql数据库比较适合应用在物联网应用系统中、数据分析工具软件有哪些、OLTP和OLAP有何区别等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)