数据库,简而言之可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据进行新增、截取、更新、删除等 *** 作。
关系型数据库主要有:
Oracle、DB2、Microsoft SQL Server、Microsoft Access、MySQL等等。
非关系型数据库主要有:
NoSql、Cloudant、MongoDb、redis、HBase等等。
扩展资料:
非关系型数据库的优势:
1、性能高:NOSQL是基于键值对的,可以想象成表中的主键和值的对应关系,而且不需要经过SQL层的解析,所以性能非常高。
2、可扩展性好:同样也是因为基于键值对,数据之间没有耦合性,所以非常容易水平扩展。
关系型数据库的优势:
1、可以复杂查询:可以用SQL语句方便的在一个表以及多个表之间做非常复杂的数据查询。
2、事务支持良好:使得对于安全性能很高的数据访问要求得以实现。
参考资料来源:百度百科-数据库
一、数据库设计过程
数据库技术是信息资源管理最有效的手段。
数据库设计是指:对于一个给定的应用环境,构造最优的数据库模式,建立数据库及其应用系统,有效存储数据,满足用户信息要求和处理要求。
数据库设计的各阶段:
A、需求分析阶段:综合各个用户的应用需求(现实世界的需求)。
B、在概念设计阶段:形成独立于机器和各DBMS产品的概念模式(信息世界模型),用E-R图来描述。
C、在逻辑设计阶段:将E-R图转换成具体的数据库产品支持的数据模型,如关系模型,形成数据库逻辑模式。然后根据用户处理的要求,安全性的考虑,在基本表的基础上再建立必要的视图(VIEW)形成数据的外模式。
D、在物理设计阶段:根据DBMS特点和处理的需要,进行物理存储安排,设计索引,形成数据库内模式。
1 需求分析阶段
需求收集和分析,结果得到数据字典描述的数据需求(和数据流图描述的处理需求)。
需求分析的重点:调查、收集与分析用户在数据管理中的信息要求、处理要求、安全性与完整性要求。
需求分析的方法:调查组织机构情况、各部门的业务活动情况、协助用户明确对新系统的各种要求、确定新系统的边界。
常用的调查方法有: 跟班作业、开调查会、请专人介绍、询问、设计调查表请用户填写、查阅记录。
分析和表达用户需求的方法主要包括自顶向下和自底向上两类方法。自顶向下的结构化分析方法(Structured Analysis,简称SA方法)从最上层的系统组织机构入手,采用逐层分解的方式分析系统,并把每一层用数据流图和数据字典描述。
数据流图表达了数据和处理过程的关系。系统中的数据则借助数据字典(Data Dictionary,简称DD)来描述。
2 概念结构设计阶段
通过对用户需求进行综合、归纳与抽象,形成一个独立于具体DBMS的概念模型,可以用E-R图表示。
概念模型用于信息世界的建模。概念模型不依赖于某一个DBMS支持的数据模型。概念模型可以转换为计算机上某一DBMS支持的特定数据模型。
概念模型特点:
(1) 具有较强的语义表达能力,能够方便、直接地表达应用中的各种语义知识。
(2) 应该简单、清晰、易于用户理解,是用户与数据库设计人员之间进行交流的语言。
概念模型设计的一种常用方法为IDEF1X方法,它就是把实体-联系方法应用到语义数据模型中的一种语义模型化技术,用于建立系统信息模型。
作者: 小灵, 出处:论坛, 责任编辑: 李书琴, 2007-09-27 15:17
本文详细解析了数据库设计过程、设计技巧以及总结了数据库命名规范……
21 第零步——初始化工程
这个阶段的任务是从目的描述和范围描述开始,确定建模目标,开发建模计划,组织建模队伍,收集源材料,制定约束和规范。收集源材料是这阶段的重点。通过调查和观察结果,业务流程,原有系统的输入输出,各种报表,收集原始数据,形成了基本数据资料表。
22 第一步——定义实体
实体集成员都有一个共同的特征和属性集,可以从收集的源材料——基本数据资料表中直接或间接标识出大部分实体。根据源材料名字表中表示物的术语以及具有 “代码”结尾的术语,如客户代码、代理商代码、产品代码等将其名词部分代表的实体标识出来,从而初步找出潜在的实体,形成初步实体表。
23 第二步——定义联系
IDEF1X模型中只允许二元联系,n元联系必须定义为n个二元联系。根据实际的业务需求和规则,使用实体联系矩阵来标识实体间的二元关系,然后根据实际情况确定出连接关系的势、关系名和说明,确定关系类型,是标识关系、非标识关系(强制的或可选的)还是非确定关系、分类关系。如果子实体的每个实例都需要通过和父实体的关系来标识,则为标识关系,否则为非标识关系。非标识关系中,如果每个子实体的实例都与而且只与一个父实体关联,则为强制的,否则为非强制的。如果父实体与子实体代表的是同一现实对象,那么它们为分类关系。
24 第三步——定义码
通过引入交叉实体除去上一阶段产生的非确定关系,然后从非交叉实体和独立实体开始标识侯选码属性,以便唯一识别每个实体的实例,再从侯选码中确定主码。为了确定主码和关系的有效性,通过非空规则和非多值规则来保证,即一个实体实例的一个属性不能是空值,也不能在同一个时刻有一个以上的值。找出误认的确定关系,将实体进一步分解,最后构造出IDEF1X模型的键基视图(KB图)。
25 第四步——定义属性
从源数据表中抽取说明性的名词开发出属性表,确定属性的所有者。定义非主码属性,检查属性的非空及非多值规则。此外,还要检查完全依赖函数规则和非传递依赖规则,保证一个非主码属性必须依赖于主码、整个主码、仅仅是主码。以此得到了至少符合关系理论第三范式的改进的IDEF1X模型的全属性视图。
26 第五步——定义其他对象和规则
定义属性的数据类型、长度、精度、非空、缺省值、约束规则等。定义触发器、存储过程、视图、角色、同义词、序列等对象信息。
3 逻辑结构设计阶段
将概念结构转换为某个DBMS所支持的数据模型(例如关系模型),并对其进行优化。设计逻辑结构应该选择最适于描述与表达相应概念结构的数据模型,然后选择最合适的DBMS。
将E-R图转换为关系模型实际上就是要将实体、实体的属性和实体之间的联系转化为关系模式,这种转换一般遵循如下原则:一个实体型转换为一个关系模式。实体的属性就是关系的属性。实体的码就是关系的码。
数据模型的优化,确定数据依赖,消除冗余的联系,确定各关系模式分别属于第几范式。确定是否要对它们进行合并或分解。一般来说将关系分解为3NF的标准,即:
表内的每一个值都只能被表达一次。
表内的每一行都应该被唯一的标识(有唯一键)。
表内不应该存储依赖于其他键的非键信息。
作者: 小灵, 出处:论坛, 责任编辑: 李书琴, 2007-09-27 15:17
本文详细解析了数据库设计过程、设计技巧以及总结了数据库命名规范……
4 数据库物理设计阶段
为逻辑数据模型选取一个最适合应用环境的物理结构(包括存储结构和存取方法)。根据DBMS特点和处理的需要,进行物理存储安排,设计索引,形成数据库内模式。
5 数据库实施阶段
运用DBMS提供的数据语言(例如SQL)及其宿主语言(例如C),根据逻辑设计和物理设计的结果建立数据库,编制与调试应用程序,组织数据入库,并进行试运行。 数据库实施主要包括以下工作:用DDL定义数据库结构、组织数据入库 、编制与调试应用程序、数据库试运行 ,(Data Definition Language(DDL数据定义语言)用作开新数据表、设定字段、删除数据表、删除字段,管理所有有关数据库结构的东西)
●Create (新增有关数据库结构的东西,属DDL)
●Drop (删除有关数据库结构的东西,属DDL)
●Alter (更改结构,属DDL)
6 数据库运行和维护阶段
在数据库系统运行过程中必须不断地对其进行评价、调整与修改。内容包括:数据库的转储和恢复、数据库的安全性、完整性控制、数据库性能的监督、分析和改进、数据库的重组织和重构造。
7 建模工具的使用
为加快数据库设计速度,目前有很多数据库辅助工具(CASE工具),如Rational公司的Rational Rose,CA公司的Erwin和Bpwin,Sybase公司的PowerDesigner以及Oracle公司的oracle Designer等。
ERwin主要用来建立数据库的概念模型和物理模型。它能用图形化的方式,描述出实体、联系及实体的属性。ERwin支持IDEF1X方法。通过使用 ERwin建模工具自动生成、更改和分析IDEF1X模型,不仅能得到优秀的业务功能和数据需求模型,而且可以实现从IDEF1X模型到数据库物理设计的转变。ERwin工具绘制的模型对应于逻辑模型和物理模型两种。在逻辑模型中,IDEF1X工具箱可以方便地用图形化的方式构建和绘制实体联系及实体的属性。在物理模型中,ERwin可以定义对应的表、列,并可针对各种数据库管理系统自动转换为适当的类型。
设计人员可根据需要选用相应的数据库设计建模工具。例如需求分析完成之后,设计人员可以使用Erwin画ER图,将ER图转换为关系数据模型,生成数据库结构;画数据流图,生成应用程序。
二、数据库设计技巧
1 设计数据库之前(需求分析阶段)
1) 理解客户需求,包括用户未来需求变化。
2) 了解企业业务类型,可以在开发阶段节约大量的时间。
3) 重视输入(要记录的数据)、输出(报表、查询、视图)。
4) 创建数据字典和ER 图表
数据字典(Data Dictionary,简称DD)是各类数据描述的集合,是关于数据库中数据的描述,即元数据,不是数据本身。(至少应该包含每个字段的数据类型和在每个表内的主外键)。
数据项描述: 数据项名,数据项含义说明,别名,数据类型,长度,取值范围,取值含义,与其他数据项的逻辑关系
数据结构描述: 数据结构名,含义说明,组成:[数据项或数据结构]
数据流描述: 数据流名,说明,数据流来源,数据流去向, 组成:[数据结构],平均流量,高峰期流量
数据存储描述: 数据存储名,说明,编号,流入的数据流,流出的数据流,组成:[数据结构],数据量,存取方式
处理过程描述: 处理过程名,说明,输入:[数据流],输出:[数据流],处理:[简要说明]
ER 图表和数据字典可以让任何了解数据库的人都明确如何从数据库中获得数据。ER图对表明表之间关系很有用,而数据字典则说明了每个字段的用途以及任何可能存在的别名。对SQL 表达式的文档化来说这是完全必要的。
5) 定义标准的对象命名规范
数据库各种对象的命名必须规范。
作者: 小灵, 出处:论坛, 责任编辑: 李书琴, 2007-09-27 15:17
本文详细解析了数据库设计过程、设计技巧以及总结了数据库命名规范……
2 表和字段的设计(数据库逻辑设计)
表设计原则
1) 标准化和规范化
数据的标准化有助于消除数据库中的数据冗余。标准化有好几种形式,但Third Normal Form(3NF)通常被认为在性能、扩展性和数据完整性方面达到了最好平衡。简单来说,遵守3NF 标准的数据库的表设计原则是:“One Fact in One Place”即某个表只包括其本身基本的属性,当不是它们本身所具有的属性时需进行分解。表之间的关系通过外键相连接。它具有以下特点:有一组表专门存放通过键连接起来的关联数据。
2) 数据驱动
采用数据驱动而非硬编码的方式,许多策略变更和维护都会方便得多,大大增强系统的灵活性和扩展性。
举例,假如用户界面要访问外部数据源(文件、XML 文档、其他数据库等),不妨把相应的连接和路径信息存储在用户界面支持的表里。如果用户界面执行工作流之类的任务(发送邮件、打印信笺、修改记录状态等),那么产生工作流的数据也可以存放在数据库里。角色权限管理也可以通过数据驱动来完成。事实上,如果过程是数据驱动的,你就可以把相当大的责任推给用户,由用户来维护自己的工作流过程。
3) 考虑各种变化
在设计数据库的时候考虑到哪些数据字段将来可能会发生变更。
4) 表名、报表名和查询名的命名规范
(采用前缀命名)检查表名、报表名和查询名之间的命名规范。你可能会很快就被这些不同的数据库要素的名称搞糊涂了。你可以统一地命名这些数据库的不同组成部分,至少你应该在这些对象名字的开头用 Table、Query 或者 Report 等前缀加以区别。如果采用了 Microsoft Access,你可以用 qry、rpt、tbl 和 mod 等符号来标识对象(比如 tbl_Employees)。用 sp_company 标识存储过程,用 udf_ (或者类似的标记)标识自定义编写的函数。
字段设计原则:
1) 每个表中都应该添加的3 个有用的字段。
dRecordCreationDate,在SQL Server 下默认为GETDATE()
sRecordCreator,在SQL Server 下默认为NOT NULL DEFAULT USER
nRecordVersion,记录的版本标记;有助于准确说明记录中出现null 数据或者丢失数据的原因
时效性数据应包括“最近更新日期/时间”字段。时间标记对查找数据问题的原因、按日期重新处理/重载数据和清除旧数据特别有用。
2) 对地址和电话采用多个字段
描述街道地址就短短一行记录是不够的。Address_Line1、Address_Line2 和Address_Line3 可以提供更大的灵活性。还有,电话号码和邮件地址最好拥有自己的数据表,其间具有自身的类型和标记类别。
3) 表内的列[字段]的命名规则(采用前缀/后缀命名)、采用有意义的字段名
对列[字段]名应该采用标准的前缀和后缀。如键是数字类型:用 _N 后缀;字符类型:_C 后缀;日期类型:_D 后缀。再如,假如你的表里有好多“money”字段,你不妨给每个列[字段]增加一个 _M 后缀。
作者: 小灵, 出处:论坛, 责任编辑: 李书琴, 2007-09-27 15:17
本文详细解析了数据库设计过程、设计技巧以及总结了数据库命名规范……
假设有两个表:
Customer 和 Order。Customer 表的前缀是 cu_,所以该表内的子段名如下:cu_name_id、cu_surname、cu_initials 和cu_address 等。Order 表的前缀是 or_,所以子段名是:
or_order_id、or_cust_name_id、or_quantity 和 or_description 等。
这样从数据库中选出全部数据的 SQL 语句可以写成如下所示:
Select From Customer, Order Where cu_surname = "MYNAME" ;
and cu_name_id = or_cust_name_id and or_quantity = 1
在没有这些前缀的情况下则写成这个样子(用别名来区分):
Select From Customer, Order Where Customersurname = "MYNAME" ;
and Customername_id = Ordercust_name_id and Orderquantity = 1
第 1 个 SQL 语句没少键入多少字符。但如果查询涉及到 5 个表乃至更多的列[字段]你就知道这个技巧多有用了。
5) 选择数字类型和文本类型的长度应尽量充足
假设客户ID 为10 位数长。那你应该把数据库表字段的长度设为12 或者13 个字符长。但这额外占据的空间却无需将来重构整个数据库就可以实现数据库规模的增长了。
6) 增加删除标记字段
在表中包含一个“删除标记”字段,这样就可以把行标记为删除。在关系数据库里不要单独删除某一行;最好采用清除数据程序而且要仔细维护索引整体性。
7) 提防大小写混用的对象名和特殊字符
采用全部大写而且包含下划符的名字具有更好的可读性(CUSTOMER_DATA),绝对不要在对象名的字符之间留空格。
8) 小心保留词
要保证你的字段名没有和保留词、数据库系统或者常用访问方法冲突,比如,用 DESC 作为说明字段名。后果可想而知!DESC 是 DESCENDING 缩写后的保留词。表里的一个 SELECT 语句倒是能用,但得到的却是一大堆毫无用处的信息。
9) 保持字段名和类型的一致性
在命名字段并为其指定数据类型的时候一定要保证一致性。假如字段在表1中叫做“agreement_number”,就别在表2里把名字改成 “ref1”。假如数据类型在表1里是整数,那在表2里可就别变成字符型了。当然在表1(ABC)有处键ID,则为了可读性,在表2做关联时可以命名为 ABC_ID。
10) 避免使用触发器
触发器的功能通常可以用其他方式实现。在调试程序时触发器可能成为干扰。假如你确实需要采用触发器,你最好集中对它文档化。
作者: 小灵, 出处:论坛, 责任编辑: 李书琴, 2007-09-27 15:17
本文详细解析了数据库设计过程、设计技巧以及总结了数据库命名规范……
3 选择键和索引(数据库逻辑设计)
参考:《SQL优化-索引》一文
4 数据完整性设计(数据库逻辑设计)
1) 完整性实现机制:
实体完整性:主键
参照完整性:
父表中删除数据:级联删除;受限删除;置空值
父表中插入数据:受限插入;递归插入
父表中更新数据:级联更新;受限更新;置空值
DBMS对参照完整性可以有两种方法实现:外键实现机制(约束规则)和触发器实现机制用户定义完整性:
NOT NULL;CHECK;触发器
2) 用约束而非商务规则强制数据完整性
采用数据库系统实现数据的完整性。这不但包括通过标准化实现的完整性而且还包括数据的功能性。不要依赖于商务层保证数据完整性;它不能保证表之间(外键) 的完整性所以不能强加于其他完整性规则之上。如果你在数据层确实采用了约束,你要保证有办法把更新不能通过约束检查的原因采用用户理解的语言通知用户界面。
3) 强制指示完整性
在有害数据进入数据库之前将其剔除。激活数据库系统的指示完整性特性。这样可以保持数据的清洁而能迫使开发人员投入更多的时间处理错误条件。
4) 使用查找控制数据完整性
控制数据完整性的最佳方式就是限制用户的选择。只要有可能都应该提供给用户一个清晰的价值列表供其选择。这样将减少键入代码的错误和误解同时提供数据的一致性。某些公共数据特别适合查找:国家代码、状态代码等。
5) 采用视图
为了在数据库和应用程序代码之间提供另一层抽象,可以为应用程序建立专门的视图而不必非要应用程序直接访问数据表。这样做还等于在处理数据库变更时给你提供了更多的自由。
6) 分布式数据系统
对分布式系统而言,在你决定是否在各个站点复制所有数据还是把数据保存在一个地方之前应该估计一下未来 5 年或者 10 年的数据量。当你把数据传送到其他站点的时候,最好在数据库字段中设置一些标记,在目的站点收到你的数据之后更新你的标记。为了进行这种数据传输,请写下你自己的批处理或者调度程序以特定时间间隔运行而不要让用户在每天的工作后传输数据。本地拷贝你的维护数据,比如计算常数和利息率等,设置版本号保证数据在每个站点都完全一致。
7) 关系
如果两个实体之间存在多对一关系,而且还有可能转化为多对多关系,那么你最好一开始就设置成多对多关系。从现有的多对一关系转变为多对多关系比一开始就是多对多关系要难得多。
8) 给数据保有和恢复制定计划
考虑数据保存策略并包含在设计过程中,预先设计你的数据恢复过程。采用可以发布给用户/开发人员的数据字典实现方便的数据识别同时保证对数据源文档化。编写在线更新来“更新查询”供以后万一数据丢失可以重新处理更新。
9) 用存储过程让系统做重活
提供一整套常规的存储过程来访问各组以便加快速度和简化客户程序代码的开发。数据库不只是一个存放数据的地方,它也是简化编码之地。
本文详细解析了数据库设计过程、设计技巧以及总结了数据库命名规范……
5 其他设计技巧
1) 避免使用触发器
触发器的功能通常可以用其他方式实现。在调试程序时触发器可能成为干扰。假如你确实需要采用触发器,你最好集中对它文档化。
2) 使用常用英语(或者其他任何语言)而不要使用编码
在创建下拉菜单、列表、报表时最好按照英语名排序。假如需要编码,可以在编码旁附上用户知道的英语。
3) 保存常用信息
让一个表专门存放一般数据库信息非常有用。在这个表里存放数据库当前版本、最近检查/修复(对Access)、关联设计文档的名称、客户等信息。这样可以实现一种简单机制跟踪数据库,当客户抱怨他们的数据库没有达到希望的要求而与你联系时,这样做对非客户机/服务器环境特别有用。
4) 包含版本机制
在数据库中引入版本控制机制来确定使用中的数据库的版本。时间一长,用户的需求总是会改变的。最终可能会要求修改数据库结构。把版本信息直接存放到数据库中更为方便。
5) 编制文档
对所有的快捷方式、命名规范、限制和函数都要编制文档。
采用给表、列、触发器等加注释的 数据库工具。对开发、支持和跟踪修改非常有用。
对数据库文档化,或者在数据库自身的内部或者单独建立文档。这样,当过了一年多时间后再回过头来做第2 个版本,犯错的机会将大大减少。
6) 测试、测试、反复测试
建立或者修订数据库之后,必须用用户新输入的数据测试数据字段。最重要的是,让用户进行测试并且同用户一道保证选择的数据类型满足商业要求。测试需要在把新数据库投入实际服务之前完成。
7) 检查设计
在开发期间检查数据库设计的常用技术是通过其所支持的应用程序原型检查数据库。换句话说,针对每一种最终表达数据的原型应用,保证你检查了数据模型并且查看如何取出数据。
三、数据库命名规范
1 实体(表)的命名
1) 表以名词或名词短语命名,确定表名是采用复数还是单数形式,此外给表的别名定义简单规则(比方说,如果表名是一个单词,别名就取单词的前4 个字母;如果表名是两个单词,就各取两个单词的前两个字母组成4 个字母长的别名;如果表的名字由3 个单词组成,从头两个单词中各取一个然后从最后一个单词中再取出两个字母,结果还是组成4 字母长的别名,其余依次类推)
对工作用表来说,表名可以加上前缀WORK_ 后面附上采用该表的应用程序的名字。在命名过程当中,根据语义拼凑缩写即可。注意:将字段名称会统一成大写或者小写中的一种,故中间加上下划线。
作者: 小灵, 出处:论坛, 责任编辑: 李书琴, 2007-09-27 15:17
本文详细解析了数据库设计过程、设计技巧以及总结了数据库命名规范……
举例:
定义的缩写 Sales: Sal 销售;
Order: Ord 订单;
Detail: Dtl 明细;
则销售订单明细表命名为:Sal_Ord_Dtl;
2) 如果表或者是字段的名称仅有一个单词,那么建议不使用缩写,而是用完整的单词。
举例:
定义的缩写 Material Ma 物品;
物品表名为:Material, 而不是 Ma
但是字段物品编码则是:Ma_ID;而不是Material_ID
3) 所有的存储值列表的表前面加上前缀Z
目的是将这些值列表类排序在数据库最后。
4) 所有的冗余类的命名(主要是累计表)前面加上前缀X
冗余类是为了提高数据库效率,非规范化数据库的时候加入的字段或者表
5) 关联类通过用下划线连接两个基本类之后,再加前缀R的方式命名,后面按照字母顺序罗列两个表名或者表名的缩写。
关联表用于保存多对多关系。
如果被关联的表名大于10个字母,必须将原来的表名的进行缩写。如果没有其他原因,建议都使用缩写。
举例:表Object与自身存在多对多的关系,则保存多对多关系的表命名为:R_Object;
作者: 小灵, 出处:论坛, 责任编辑: 李书琴, 2007-09-27 15:17
本文详细解析了数据库设计过程、设计技巧以及总结了数据库命名规范……
2 属性(列)的命名
1) 采用有意义的列名
表内的列要针对键采用一整套设计规则。每一个表都将有一个自动ID作为主健,逻辑上的主健作为第一组候选主健来定义;
A、如果是数据库自动生成的编码,统一命名为:ID
B、如果是自定义的逻辑上的编码则用缩写加“ID”的方法命名,即“XXXX_ID”
C、如果键是数字类型,你可以用_NO 作为后缀;
D、如果是字符类型则可以采用_CODE 后缀
E、对列名应该采用标准的前缀和后缀。
举例:销售订单的编号字段命名:Sal_Ord_ID;如果还存在一个数据库生成的自动编号,则命名为:ID。
2) 所有的属性加上有关类型的后缀
注意,如果还需要其它的后缀,都放在类型后缀之前。
注: 数据类型是文本的字段,类型后缀TX可以不写。有些类型比较明显的字段,可以不写类型后缀。
3) 采用前缀命名
给每个表的列名都采用统一的前缀,那么在编写SQL表达式的时候会得到大大的简化。这样做也确实有缺点,比如破坏了自动表连接工具的作用,后者把公共列名同某些数据库联系起来。
3 视图的命名
1) 视图以V作为前缀,其他命名规则和表的命名类似;
2) 命名应尽量体现各视图的功能。
4 触发器的命名(尽量不使用)
触发器以TR作为前缀,触发器名为相应的表名加上后缀,Insert触发器加'_I',Delete触发器加'_D',Update触发器加'_U',如:TR_Customer_I,TR_Customer_D,TR_Customer_U。
5 存储过程名
存储过程应以'UP_'开头,和系统的存储过程区分,后续部分主要以动宾形式构成,并用下划线分割各个组成部分。如增加代理商的帐户的存储过程为'UP_Ins_Agent_Account'。
6 变量名
变量名采用小写,若属于词组形式,用下划线分隔每个单词,如@my_err_no。
7 命名中其他注意事项
1) 以上命名都不得超过30个字符的系统限制。变量名的长度限制为29(不包括标识字符@)。
2) 数据对象、变量的命名都采用英文字符,禁止使用中文命名。绝对不要在对象名的字符之间留空格。
3) 小心保留词,要保证你的字段名没有和保留词、数据库系统或者常用访问方法冲突
4) 保持字段名和类型的一致性,在命名字段并为其指定数据类型的时候一定要保证一致性。假如数据类型在一个表里是整数,那在另一个表里可就别变成字符型了。
在关系数据库中有型和值两种类型结构。关系模式是型,关系是值,关系模式是对关系的描述。
描述一个关系需要从以下两个方面来定义:第一方面,关系实质上是一个二维表,表的每一行为一个元组,每一列为一个属性。一个元组就是该关系所涉及的属性集的笛卡儿积的一个元素。关系是元组的集合,因此关系模式必须指出这个元组集合的结构,即它由哪些属性构成,这些属性来自哪些域,以及属性与域之间的映象关系。
第二方面,一个关系通常是由赋予它的元组语义来确定的。元组语义实质上是一个n目谓词(n是属性集中属性的个数)。凡使该n目谓词为真的笛卡儿积中的元素(或者说凡符合元组语义的那部分元素)的全体就构成了该关系模式的关系。
131关系数据库基本概念关系数据中,关系模式涉及众多概念、术语,初学者对这方面不容易把握与理解,以下用通俗易懂的语言来对这些概念及术语作简单的介绍。
1关系关系(Relation)是指数据库中实体的信息,也就是数据库中二维表的数据。一个关系就是一个数据库表的值,表中的内容是对应关系模式在某个时刻的值,称为一个关系。例如,关系A表示数据库有一张名字为A的数据表所记录的所有数据。关系数据库中每一个关系都具有以下六方面的性质:((1)列是同质的。即每一列中的分量为同一类型的数据,来自同一个域。
(2)不同的列可出自同一个域,称其中的每列为一个属性,不同的属性要给予不同的属性名。
(3)列的顺序无所谓。即列的次序可以任意交换。
(4)任意两个元组不能完全相同。
(5)行的顺序无所谓。即行的次序可以任意交换。
(6)分量必须取原子值。即每一个分量都必须是不可分的数据库属性。
2模式模式(Schema)是数据库中全体数据的逻辑结构和特征的描述,是所有用户的公共数据视图,也称逻辑模式。有以下几方面性质:((1)一个数据库只有一个模式。
(2)模式是数据在逻辑级上的视图。
(3)以某一种数据模型为基础。
定义模式时不仅要定义数据的逻辑结构,包括数据项的构成、名字、类型、取值范围等,而且要定义与数据有关的安全性、完整性要求,定义这些数据之间的联系。
3关系模式关系模式(RelationSchema)描述的是与关系相对应的二维表的表结构,即关系中包含哪些属性,属性来自哪些域,以及与域之间的映象关系。
关系模式与关系的区别:((1)关系模式描述了关系数据结构和语义,是关系的型。而关系是一个数据集合,是关系模式的值,是关系模式的一个实例。
(2)关系实际上就是关系模式在某一时刻的状态或内容。关系模式是静态的、稳定的,而关系是动态的、随时间不断变化的,因为数据库 *** 作会不断地更新数据库中的数据。
4元组元组(Tuple)是关系数据库中的基本概念,一个关系表中的每行就是一个元组。也就是说数据库表中的每条记录都是一个元组,表结构的每列就是一个属性,在二维表里,元组也称为记录。元组可表示一个关系或关系之间的联系。
一般情况下,一个关系数据表中的每条记录均有一个唯一的编号(记录号),这个编号也叫元组号。
5码码(Key)是关系数据库系统中的基本概念。所谓码,就是能唯一标识实体的属性集,是整个属性集,而不是单个属性。在关系数据库中,码包括多种类型,如超码、候选码和主码。
((1)超码(SuperKey)。超码是一个或多个属性的集合,这些属性可以在一个实体集中唯一地标识一个实体。如果K是一个超码,那么K的任意超集也是超码,也就是说如果K是超码,那么所有包含K的集合也是超码。例如,学生是一个实体,则学生的集合是一个实体集,而超码用来在学生的集合中区分不同的学生。假设学生(实体)具有多个属性:学号,身份z号,姓名,性别。因为通过学号可以找到唯一一个学生,所以{学号}是一个超码,同理{学号,身份z号}、{学号,身份z号,姓名}、{学号,身份z号,姓名,性别}、{身份z号}、{身份z号,姓名}、{身份z号,姓名,性别}也是超码。在这里,因为不同的学生可能拥有相同的姓名,所以姓名不可以区别一个学生,即{姓名}不是一个超码,{性别}、{姓名,性别}也不是。
(2)候选码(CandidateKey)。候选码是可以唯一标识一个元组的最少的属性集合。候选码是从超码中选出的,因此候选码也是一个或多个属性的集合。因为超码的范围太广,很多是无用的,所以候选码是最小超码,它们的任意真子集都不能成为超码。例如,如果K是超码,那么所有包含K的集合都不能是候选码;如果K,J都不是超码,那么K和J组成的集合{K,J}有可能是候选码。
虽然超码可以唯一标识一个实体,但是可能大多数超码中含有多余的属性,所以需要候选码。
例如学生表,学生(学号,姓名,年龄,性别,专业),其中的学号是可以唯一标识一个元组,所以学号可以作为候选码。既然学号都可以作候选码,那么学号和姓名这两个属性的组合就可以唯一区别一个元组。此时的学号可以成为码,学号和姓名的组合也可以成为码,但是学号和姓名的组合不能成为候选码,因为即使去掉姓名属性,剩下的学号属性也完全可以唯一地标识一个元组。也就是说,候选码中的所有属性都是必需的,缺少任何一个属性,都不能唯一标识一个元组。
(3)主码(PrimaryKey)。主码是从多个候选码中任意选出一个作为主键,这个被选中的候选码就称为主码。如果候选码只有一个,那么候选码就是主码。虽然说主码的选择是比较随意的,但在实际开发中还是需要一定的经验,不然开发出来的系统会出现问题。一般来说,主码都应该选择那些从不或者极少变化的属性。
例如,在一个职工实体中,职工(职工号,姓名,入职时间,部门,岗位,工资,职级,工龄,电话),职工号可以用来唯一确定实体中的一个元组,所以职工号是一个候选码。如果实体属性——姓名、入职时间、部门三者组合也能唯一地确定一个元组,则(姓名,入职时间,部门)也是一个候选码。在上述两个候选码中任选一个均可作为职工实体的主码,一般来说直接选择职工号作为实体的主码是最为简单方便的。
132关系模式的定义关系是数据库二维表中的数据记录,关系模式是数据库二维表的表结构,关系是动态的,关系模式是静态的。
关系模式可由六个元素来描述,分别是R、U、D、dom、I、F。其中,R为关系的名称;
U为组成该关系的属性名的集合;D为U集合中属性的域集合;dom为属性集U向域集D的映射;I为完整约束集合;F为属性间数据的依赖关系集合。
一个关系模式通常表示为R(U,D,dom,I,F),也可以忽略其他元素,直接简化为R(U)或R(A1,A2,A3,…,An),其中A1,A2,A3,…,An为属性名。
例如,在一个选课模块中,包含“学生”“课程”“选修”等关系实体。“学生”实体的属性有SNO(学号)、SNAME(姓名)、AGE(年龄)、SEX(性别)、SDEPT(系部),其中“学号”为主键;“课程”实体的属性有CNO(课程号)、CNAME(课程名称)、CDEPT(系部)、TNAME(教师),其中“课程号”为主键;“选修”实体的属性有GRADE(成绩)、SNO(学号)、CNO(课程号),其中“学号”和“课程号”为联合主键。学生和课程之间是多对多的关联关系,即一个学生可以同时选修多门课程,一门课程也可以同时被多个学生选修。这种多对多的关联关系可以通过“选修”关系实体作为中间桥接实体,变成两个一对多的实体关联关系,如图所示。
图学生选课实体
从图的实体关系图中可以得到选课模块的实体关系模式集——学生关系、课程关系、选修关系,具体关系模式如下:学生关系模式Student(SNO,SNAME,AGE,SEX,SDEPT);
课程关系模式Course(CNO,CNAME,CDEPT,TNAME);
选修关系模式StudentCourse(SNO,CNO,GRADE)。
对以上定义的三个关系模式实例化,插入初始化数据后,可得到学生、课程、选修三个关系的实例,如图所示。图中矩形框圈住部分为选课模块中的关系模式(表结构);椭圆框圈住部分为选课模块中的关系(数据)。整个选课模块的表环境由关系模式与关系两部分共同组成,缺一不可。关系模式的分解标准关系模式的规范化过程实际上就是关系模式的“分解”过程,即把逻辑上独立的信息放在独立的关系模式中。分解是解决数据冗余的主要方法,也是规范化的一条原则——关系模式有冗余问题就要分解。
数据库设计者在进行关系数据库设计时,应参照模式规范化理论,尽可能使数据库模式保持高的标准。一般尽量把关系数据库设计成巴斯−科德范式(BCNF)的模式集,如果设计成巴斯−科德范式(BCNF)模式集时达不到保持函数依赖的标准,那么只能降低要求,设计成第三范式(3NF)的模式集,以达到保持函数依赖和无损分解的基本要求。
学生、课程、选修三个关系的实例
1分解的定义一个关系模式可以分解成众多子关系模式,分解方式不同,得到的子关系模式也不同。
关系模式的分解是指把某一个关系模式按照某一种方式进行分解得到的所有子关系模式。
如关系模式R按照某一种方式分解,可以得到一个关系集ρ={R1,R2,…,Rn}。其中属性集U=U1∪U2∪…∪Un,并且不能存在Ui⊆Uj,1≤i,j≤n。
函数依赖关系集F=F1∪F2∪…∪Fn,其中F1,F2,…,Fn是F在U1,U2,…,Un上的投影。
2分解的标准把低级的关系模式分解成高级的关系模式的方法不是唯一的,只要能够保证分解后的关系模式与原关系模式等价,就是一个完整、标准的分解方法。关系模式的标准分解方法应同时达到以下两方面的要求:((1)分解具有无损连接性。
(2)分解要保持函数依赖性。
具有无损连接性的分解保证信息不会丢失,但无损连接不一定能解决插入异常、删除异常、修改复杂、数据冗余等问题,如要解决这些问题,则要考虑更高的关系数据范式理论原则。
ASP数据库类型DBFDBCMDBExcelSQLServer
数据库是在计算机存储设备上按一定方式,合理组织并存储的相互有关联的数据的集合,是计算机技术和信息检索技术相结合的产物,是电子信息资源的主体,是信息检索系统的核心部分之一。按所提供的信息内容,数据库主要可分为参考数据库和源数据库。
1.参考数据库
主要存储一系列描述性信息内容,指引用户到另一信息源以获得完整的原始信息的一类数据库,主要包括书目数据库和指南数据库。
(1)书目数据库 存储描述如目录、题录、文摘等书目线索的数据库,又称二次文献信息数据库。如各种图书馆目录数据库、题录数据库和文摘数据库等属于此类,它的作用是为用户指出了获取原始信息的线索。
图书馆目录数据库,又称机读目录,其数据内容详细,除描述标题、作者、出版项等书目信息外,还提供用户索取原始信息的馆藏信息。题录、文摘数据库描述的数据内容与印刷型的题录、文摘相似,它提供了论文信息或专利信息等确定的信息来源,供用户检索。
(2)指南数据库 存储描述关于机构、人物、产品、活动等对象的数据库。与其它数据库相比,指南数据库为用户提供的不仅仅是有关信息,还包括各种类型的实体,多采用名称进行检索。如存储生产与经营活动信息的机构名录数据库、存储人物信息的人物传记数据库、存储产品或商品信息的产品指南数据库、存储基金信息的基金数据库等属于此类,它的作用指引用户从其它有关信息源获取更详细的信息。
2.源数据库
主要存储全文、数值、结构式等信息,能直接提供原始信息或具体数据,用户不必再转查其它信息源的数据库。它主要包括全文数据库和数值数据库。
(1)全文数据库 存储原始信息全文或主要部分的一种源数据库。如期刊全文数据库、专利全文数据库、百科全书全文数据库,用户使用某一词汇或短语,便可直接检索出含有该词汇或短语的原始信息的全文。
(2)数值数据库 存储以数值表示信息为主的一种源数据库,和它类似的有文本-数值数据库。与书目数据库比较,数值数据库是对信息进行深加工的产物,可以直接提供所需的数据信息。如各种统计数据库、科学技术数据库等。数值数据库除了一般的检索功能外,还具有准确数据运算功能、数据分析功能、图形处理功能及对检索输出的数据进行排序和重新组织等方面的功能。
4.2.2 数据库结构
1.书目数据库的结构
书目数据库是以文档形式组织一系列数据,这些数据被称为记录,一个记录又包含若干字段。
(1)记录与字段 记录是作为一个单位来处理有关数据的集合,是组成文档的基本数据单位。记录中所包含的若干字段,则是组成记录的基本数据单位。在书目数据库中,一个记录相当于一条题录或文摘,因此,一个记录通常由标题字段、作者字段、来源字段、文摘字段、主题词字段、分类号字段、语种字段等组成。在有些字段中,又包含多个子字段,子字段是字段的下级数据单位。如,主题词字段含有多个主题词。按照字段所代表记录的性质不同,字段通常分为基本字段和辅助字段两类。常见的字段名称及代码见表4-1。
表4-1 字段名称及代码
基本字段
辅助字段
字段名称
字段代码
字段名称
字段代码
标 题
TI
记录号
DN
文 摘
AB
作 者
AU
叙 词
DE
作者单位
CS
标识词
ID
期刊名称
JN
出版年
PY
出版国
CO
语 种
LA
(2)文档 按一定结构组织的相关记录的集合。文档是书目数据库数据组织的基本形式,文档的组织方式与检索系统的硬件和软件功能密切相关。在书目数据库中,文档结构主要分为顺排文档和倒排文档。
1)顺排文档 记录按顺序存放,记录之间的逻辑顺序与物理顺序是一致的,相当于印刷型工具中文摘的排列顺序,是一种线形文档。顺排文档是构成数据库的主体部分,但其主题词等特征的标识呈无序状态,直接检索时,必须以完整的记录作为检索单元,从头至尾查询,检索时间长,实用性较差。
2)倒排文档 将顺排文档中各个记录中含有主题性质的字段(如主题词字段、标题字段、叙词字段等)和非主题性质字段(如作者字段、机构字段、来源字段等)分别提取出来,按某种顺序重新组织得到的一种文档。具有主题性质的倒排档,称基本索引档,非主题性质的倒排档,称辅助索引档。
综上所述,顺排档和倒排档的主要区别是:顺排档以完整的记录为处理和检索单元,是主文档,倒排档以记录中的字段为处理和检索单元,是索引文档。计算机进行检索时,先进入倒排档查找有关信息的存取号,然后再进入顺排档按存取号查找记录。
2全文数据库的结构
一般的全文数据库结构与书目数据库相似,全文数据库的一个记录就是一个全文文本,记录分成若干字段。其主文档是以顺排形式组织的文本文档,倒排档是对应于记录可检字段的索引文档。
3数值数据库的结构
数值数据库的结构要综合考虑数据库的内容及检索目的,即,在内容上,数值数据库的主要内容是数值信息,但不排除含有必要的说明性的文本信息,在检索上,便于单项检索和综合检索,还能对数值进行准确数据运算、数据分析、图形处理及对检索输出的数据进行排序和重新组织。数值数据库的数据结构可以是单元式,也可以是表册形式。前者是对原始数据的模拟,后者则是对统计表格的机读模拟。数值数据库通常有多种文档,如顺排挡、倒排挡、索引文档等。顺排挡是由数值数据组成,为主文档,另有相应的索引文档,为便于存取,索引文档采用基本直接存取结构的组织形式。倒排挡也有相应的索引文档,索引文档采取分级组织形式。数值数据库的文档结构,使所有文档都可以用于检索,所有数据都可用来运算,构成了数值数据库的特点。
4.指南数据库的结构
指南数据库的结构兼有书目数据库、全文数据库和数值数据库的特点,有顺排档、倒排档、索引文档和数据字典。一般而言,对涉及主题领域较多,内容综合性较强的大型指南数据库,顺排挡(主文档)可采用多子文档的结构,对单一主题领域和内容较专的,则采用单一主文档和不定长、多字段的记录格式为宜。
实体型是一种数据类型,既可以是实体,也可以是实体集,实体集就是实体的集合,一个实体是实体也是实体集,多个实体同样是实体集。实体是表示数据库中描述的现实世界中的对象或概念,可以看作一个模型。
以上就是关于数据库有哪些类型全部的内容,包括:数据库有哪些类型、数据库中的实体,实体型,实体集解析、数据库关系模式有哪些类型等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)