大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中,大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法)大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、veracity(真实性)。大数据需要特殊的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、、地理位置信息等等。第三,数据的来源,直接导致分析结果的准确性和真实性。若数据来源是完整的并且真实,最终的分析结果以及决定将更加准确。第四,处理速度快,1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”
从某种程度上说,大数据是数据分析的前沿技术。简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。
搜索下各种百科,上面都有。说白了,就是数据量非常庞大。这确实是近几年的热点问题。
通常数据库分为关系型数据库和非关系型数据库,关系型数据库的优势到现在也是无可替代的,比如MySQL、SQLServer、Oracle、DB2、SyBase、Informix、PostgreSQL以及比较小型的Aess等等数据库,这些数据库支持复杂的SQL *** 作和事务机制,适合小量数据读写场景;但是到了大数据时代,人们更多的数据和物联网加入的数据已经超出了关系数据库的承载范围。
大数据时代初期,随着数据请求并发量大不断增大,一般都是采用的集群同步数据的方式处理,就是将数据库分成了很多的小库,每个数据库的数据内容是不变的,都是保存了源数据库的数据副本,通过同步或者异步方式保证数据的一致性,每个库设定特定的读写方式,比如主数据库负责写 *** 作,从数据库是负责读 *** 作,等等根据业务复杂程度以此类推,将业务在物理层面上进行了分离,但是这种方式依旧存在一定的负载压力的问题,企业数据在不断的扩增中,后面就采用分库分表的方式解决,对读写负载进行分离,但是这种实现依旧存在不足,且需要不断进行数据库服务器扩容。
NoSQL数据库大致分为5种类型
1、列族数据库:BigTable、HBase、Cassandra、AmazonSimpleDB、HadoopDB等,下面简单介绍几个
(1)Cassandra:Cassandra是一个列存储数据库,支持跨数据中心的数据复制。它的数据模型提供列索引,log-structured修改,支持反规范化,实体化视图和嵌入超高速缓存。
(2)HBase:ApacheHbase源于Google的Bigtable,是一个开源、分布式、面向列存储的模型。在Hadoop和HDFS之上提供了像Bigtable一样的功能。
(3)AmazonSimpleDB:AmazonSimpleDB是一个非关系型数据存储,它卸下数据库管理的工作。开发者使用Web服务请求存储和查询数据项
(4)ApacheAumulo:ApacheAumulo的有序的、分布式键值数据存储,基于Google的BigTable设计,建立在ApacheHadoop、Zookeeper和Thrift技术之上。
(5)Hypertable:Hypertable是一个开源、可扩展的数据库,模仿Bigtable,支持分片。
(6)AzureTables:WindowsAzureTableStorageService为要求大量非结构化数据存储的应用提供NoSQL性能。表能够自动扩展到TB级别,能通过REST和ManagedAPI访问。
2、键值数据库:Redis、SimpleDB、Scalaris、Memcached等,下面简单介绍几个
(1)Riak:Riak是一个开源,分布式键值数据库,支持数据复制和容错。(2)Redis:Redis是一个开源的键值存储。支持主从式复制、事务,Pub/Sub、Lua脚本,还支持给Key添加时限。
(3)Dynamo:Dynamo是一个键值分布式数据存储。它直接由亚马逊Dynamo数据库实现;在亚马逊S3产品中使用。
(4)OracleNoSQLDatabase:来自Oracle的键值NoSQL数据库。它支持事务ACID(原子性、一致性、持久性和独立性)和JSON。
(5)OracleNoSQLDatabase:具备数据备份和分布式键值存储系统。
(6)Voldemort:具备数据备份和分布式键值存储系统。
(7)Aerospike:Aerospike数据库是一个键值存储,支持混合内存架构,通过强一致性和可调一致性保证数据的完整性。
3、文档数据库:MongoDB、CouchDB、Perservere、Terrastore、RavenDB等,下面简单介绍几个
(1)MongoDB:开源、面向文档,也是当下最人气的NoSQL数据库。
(2)CounchDB:ApacheCounchDB是一个使用JSON的文档数据库,使用Javascript做MapRece查询,以及一个使用>
(3)Couchbase:NoSQL文档数据库基于JSON模型。
(4)RavenDB:RavenDB是一个基于NET语言的面向文档数据库。
(5)MarkLogic:MarkLogicNoSQL数据库用来存储基于XML和以文档为中心的信息,支持灵活的模式。
4、图数据库:Neo4J、InfoGrid、OrientDB、GraphDB,下面简单介绍几个
(1)Neo4j:Neo4j是一个图数据库;支持ACID事务(原子性、独立性、持久性和一致性)。
(2):一个图数据库用来维持和遍历对象间的关系,支持分布式数据存储。
(3):是结合使用了内存和磁盘,提供了高可扩展性,支持SPARQ、RDFS和Prolog推理。
5、内存数据网格:Hazelcast、OracleCoherence、TerracottaBigMemorry、GemFire、Infinispan、GridGain、GigaSpaces,下面简单介绍几个
(1)Hazelcast:HazelcastCE是一个开源数据分布平台,它允许开发者在数据库集群之上共享和分割数据。
(2)OracleCoherence:Oracle的内存数据网格解决方案提供了常用数据的快速访问能力,一致性支持事务处理能力和数据的动态划分。
(3)TerracottaBigMemory:来自Terracotta的分布式内存管理解决方案。这项产品包括一个Ehcache界面、Terracotta管理控制台和BigMemory-Hadoop连接器。
(4)GemFire:VmwarevFabricGemFire是一个分布式数据管理平台,也是一个分布式的数据网格平台,支持内存数据管理、复制、划分、数据识别路由和连续查询。
(5)Infinispan:Infinispan是一个基于Java的开源键值NoSQL数据存储,和分布式数据节点平台,支持事务,peer-to-peer及client/server架构。
(6)GridGain:分布式、面向对象、基于内存、SQLNoSQL键值数据库。支持ACID事务。
(7)GigaSpaces:GigaSpaces内存数据网格能够充当应用的记录系统,并支持各种各样的高速缓存场景。
数据库是存储数据的地方,就是用来储存数据的,而且数据库是可以存放大量的数据 的,允许多人同时使用里面的数据,相比于excel,数据库容量更大,更方便。用比方来说,区别就是大数据是水,而数据库是水库,来装水的。就容器与物品的关系
大数据的来源包括交易数据、人工数据、机器和传感器数据。 交易数据包括POS机数据、xyk数据等。人为数据,包括通过微信、博客、推文等产生的邮件、文档、、数据流等。;以及机器传感器数据,例如传感器、仪表和其他设施。 大数据,或称巨量数据,是指庞大到无法通过主流软件工具在合理的时间内检索、管理、处理和排序的信息,以帮助企业做出更主动的商业决策。大数据需要特殊的技术来有效处理大量可以容忍时间流逝的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展存储系统。
什么是大数据?
随着云时代的来临,大数据(big data)也吸引了越来越多的关注。那么,大数据究竟是什么呢?它的定义、结构、特点是什么呢?它又能应用在哪些方面呢?相信通过这篇文章你可以对大数据有一个全新全面的认识。
一、定义
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
二、特点
国际商业机器公司(简称:IBM)提出了大数据的5V特点,即:Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
三、结构
大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。
想要系统的认知大数据,必须要全面而细致的分解它,着手从三个层面来展开:
第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
四、应用
1洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
2google流感趋势(Google Flu Trends)利用搜关键词预测禽流感的散布。
3统计学家内特西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
4麻省理工学院利用手机定位数据和交通数据建立城市规划。
5梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
6医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。
通过以上几个方面说明:现在已经迎来了大数据时代。因此大数据开发成为各企业非常看重的一部分,对这方面的人才需求也逐渐增多。
以上就是关于大数据是指什么全部的内容,包括:大数据是指什么、大数据常用哪些数据库(什么是大数据库)、数据库和大数据的区别等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)