php+mysql在数据库里数据大的话查询很慢

php+mysql在数据库里数据大的话查询很慢,第1张

1建立索引,尽可能把索引建立到你你经常比较的字段上,如select

a,b,c,d

from

a

where

索引字段=值,这个索引字段最好是数值型数据

2慢有更多情况,

情况1:远程查询,其实可能查询不慢,由于数据量大,传输过程慢

情况2:WHERE

后面的比较数据太多,比如

like

类的语句

情况3:需要哪个字段只取那个字段就行了,比如select

from

a与select

b,c,d

from

a速度是有差距的

3数据库定期维护,压缩,把不常用的数据备份后放入备份库里,查询时查备份库等

问题补充:

第一条:建立索引,怎么建立,我也听说过,但不知道怎么使用

答:每种数据建立索引的方法有差异,比如SQL

SERVER

2000中可对多个字段进行索引,比如SQL

SERVER2000中有命令

CREATE

INDEX

为给定表或视图创建索引。

只有表或视图的所有者才能为表创建索引。表或视图的所有者可以随时创建索引,无论表中是否有数据。可以通过指定限定的数据库名称,为另一个数据库中的表或视图创建索引。

语法

CREATE

[

UNIQUE

]

[

CLUSTERED

|

NONCLUSTERED

]

INDEX

index_name

ON

{

table

|

view

}

(

column

[

ASC

|

DESC

]

[

,n

]

)

[

WITH

<

index_option

>

[

,n]

]

[

ON

filegroup

]

<

index_option

>

::=

{

PAD_INDEX

|

FILLFACTOR

=

fillfactor

|

IGNORE_DUP_KEY

|

DROP_EXISTING

|

STATISTICS_NORECOMPUTE

|

SORT_IN_TEMPDB

}

第三条:数据库定期维护,压缩:怎么个压缩法?及时备份数据到备份库查询备份库,那查询时不是还慢吗?

答:这个有压缩工具,基本上每种数据库都有自己的压缩数据库的工具

在开始演示之前,我们先介绍下两个概念。

概念一,数据的可选择性基数,也就是常说的cardinality值。

查询优化器在生成各种执行计划之前,得先从统计信息中取得相关数据,这样才能估算每步 *** 作所涉及到的记录数,而这个相关数据就是cardinality。简单来说,就是每个值在每个字段中的唯一值分布状态。

比如表t1有100行记录,其中一列为f1。f1中唯一值的个数可以是100个,也可以是1个,当然也可以是1到100之间的任何一个数字。这里唯一值越的多少,就是这个列的可选择基数。

那看到这里我们就明白了,为什么要在基数高的字段上建立索引,而基数低的的字段建立索引反而没有全表扫描来的快。当然这个只是一方面,至于更深入的探讨就不在我这篇探讨的范围了。

概念二,关于HINT的使用。

这里我来说下HINT是什么,在什么时候用。

HINT简单来说就是在某些特定的场景下人工协助MySQL优化器的工作,使她生成最优的执行计划。一般来说,优化器的执行计划都是最优化的,不过在某些特定场景下,执行计划可能不是最优化。

比如:表t1经过大量的频繁更新 *** 作,(UPDATE,DELETE,INSERT),cardinality已经很不准确了,这时候刚好执行了一条SQL,那么有可能这条SQL的执行计划就不是最优的。为什么说有可能呢?

来看下具体演示

譬如,以下两条SQL,

A:

select from t1 where f1 = 20;

B:

select from t1 where f1 = 30;

如果f1的值刚好频繁更新的值为30,并且没有达到MySQL自动更新cardinality值的临界值或者说用户设置了手动更新又或者用户减少了sample page等等,那么对这两条语句来说,可能不准确的就是B了。

这里顺带说下,MySQL提供了自动更新和手动更新表cardinality值的方法,因篇幅有限,需要的可以查阅手册。

那回到正题上,MySQL 80 带来了几个HINT,我今天就举个index_merge的例子。

示例表结构:

mysql> desc t1;+------------+--------------+------+-----+---------+----------------+| Field      | Type         | Null | Key | Default | Extra          |+------------+--------------+------+-----+---------+----------------+| id         | int(11)      | NO   | PRI | NULL    | auto_increment || rank1      | int(11)      | YES  | MUL | NULL    |                || rank2      | int(11)      | YES  | MUL | NULL    |                || log_time   | datetime     | YES  | MUL | NULL    |                || prefix_uid | varchar(100) | YES  |     | NULL    |                || desc1      | text         | YES  |     | NULL    |                || rank3      | int(11)      | YES  | MUL | NULL    |                |+------------+--------------+------+-----+---------+----------------+7 rows in set (000 sec)

表记录数:

mysql> select count() from t1;+----------+| count() |+----------+|    32768 |+----------+1 row in set (001 sec)

这里我们两条经典的SQL:

SQL C:

select from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2;

SQL D:

select from t1 where rank1 =100  and rank2 =100  and rank3 =100;

表t1实际上在rank1,rank2,rank3三列上分别有一个二级索引。

那我们来看SQL C的查询计划。

显然,没有用到任何索引,扫描的行数为32034,cost为324365。

mysql> explain  format=json select from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\G 1 row EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "324365"    },    "table": {      "table_name": "t1",      "access_type": "ALL",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "rows_examined_per_scan": 32034,      "rows_produced_per_join": 115,      "filtered": "036",      "cost_info": {        "read_cost": "323207",        "eval_cost": "1158",        "prefix_cost": "324365",        "data_read_per_join": "49K"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt``t1``rank1` = 1) or (`ytt``t1``rank2` = 2) or (`ytt``t1``rank3` = 2))"    }  }}1 row in set, 1 warning (000 sec)

我们加上hint给相同的查询,再次看看查询计划。

这个时候用到了index_merge,union了三个列。扫描的行数为1103,cost为44109,明显比之前的快了好几倍。

mysql> explain  format=json select /+ index_merge(t1) / from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\G 1 row EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "44109"    },    "table": {      "table_name": "t1",      "access_type": "index_merge",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "union(idx_rank1,idx_rank2,idx_rank3)",      "key_length": "5,5,5",      "rows_examined_per_scan": 1103,      "rows_produced_per_join": 1103,      "filtered": "10000",      "cost_info": {        "read_cost": "33079",        "eval_cost": "11030",        "prefix_cost": "44109",        "data_read_per_join": "473K"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt``t1``rank1` = 1) or (`ytt``t1``rank2` = 2) or (`ytt``t1``rank3` = 2))"    }  }}1 row in set, 1 warning (000 sec)

我们再看下SQL D的计划:

不加HINT,

mysql> explain format=json select from t1 where rank1 =100 and rank2 =100 and rank3 =100\G 1 row EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "53434"    },    "table": {      "table_name": "t1",      "access_type": "ref",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "idx_rank1",      "used_key_parts": [        "rank1"      ],      "key_length": "5",      "ref": [        "const"      ],      "rows_examined_per_scan": 555,      "rows_produced_per_join": 0,      "filtered": "007",      "cost_info": {        "read_cost": "47884",        "eval_cost": "004",        "prefix_cost": "53434",        "data_read_per_join": "176"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt``t1``rank3` = 100) and (`ytt``t1``rank2` = 100))"    }  }}1 row in set, 1 warning (000 sec)

加了HINT,

mysql> explain format=json select /+ index_merge(t1)/ from t1 where rank1 =100 and rank2 =100 and rank3 =100\G 1 row EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "523"    },    "table": {      "table_name": "t1",      "access_type": "index_merge",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "intersect(idx_rank1,idx_rank2,idx_rank3)",      "key_length": "5,5,5",      "rows_examined_per_scan": 1,      "rows_produced_per_join": 1,      "filtered": "10000",      "cost_info": {        "read_cost": "513",        "eval_cost": "010",        "prefix_cost": "523",        "data_read_per_join": "440"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt``t1``rank3` = 100) and (`ytt``t1``rank2` = 100) and (`ytt``t1``rank1` = 100))"    }  }}1 row in set, 1 warning (000 sec)

对比下以上两个,加了HINT的比不加HINT的cost小了100倍。

总结下,就是说表的cardinality值影响这张的查询计划,如果这个值没有正常更新的话,就需要手工加HINT了。相信MySQL未来的版本会带来更多的HINT。

你好,你可以根据条件去添加索引,例如:

一、

所有mysql索引列类型都可以被索引,对来相关类使用索引可以提高select查询性能,根据mysql索引数,可以是最大索引与最小索引,每种存储引擎对每个表的至少支持16的索引。总索引长度为256字节。

mysim和innodb存储引擎的表默认创建索引都是btree索引,目前mysql还不支持函数索引,但支持前缘索引,对字段前N个字符创建索引

二、mysql创建索引语法

Create [unioun|fulltext|spatial] index indexname[using indextype] on tablename( tablenamecol)

index_col_name:

col_name[ (length)][asc |desc]

如果你创建索引时搞错了,需要修改mysql索引我们可以用alert来修改索引,语法与create index创建索引差不多,我们就不说了,可以查看相关手册。

下面我们来看一个关于mysql创建索引实例教程。

mysql>create index cityname on city(city(2));

Query Ok,600 rows affected (026 sec)

Records :600 Duplicates:0 Warings 0:

我们现在来以city为条件进行查询,如下面。

->explain select  from city where city ='

不过通常对百万级数据的查询或者其他 *** 作,都改换其他的大型的数据库了,希望能帮到你,望采纳。

问题

我们有一个 SQL,用于找到没有主键 / 唯一键的表,但是在 MySQL 57 上运行特别慢,怎么办

实验

我们搭建一个 MySQL 57 的环境,此处省略搭建步骤。

写个简单的脚本,制造一批带主键和不带主键的表:

执行一下脚本:

现在执行以下 SQL 看看效果:

执行了 1680s,感觉是非常慢了。

现在用一下 DBA 三板斧,看看执行计划:

感觉有点惨,由于 information_schemacolumns 是元数据表,没有必要的统计信息。

那我们来 show warnings 看看 MySQL 改写后的 SQL:

我们格式化一下 SQL:

可以看到 MySQL 将

select from A where Ax not in (select x from B) //非关联子查询

转换成了

select from A where not exists (select 1 from B where Bx = ax) //关联子查询

如果我们自己是 MySQL,在执行非关联子查询时,可以使用很简单的策略:

select from A where Ax not in (select x from B where ) //非关联子查询:1 扫描 B 表中的所有记录,找到满足条件的记录,存放在临时表 C 中,建好索引2 扫描 A 表中的记录,与临时表 C 中的记录进行比对,直接在索引里比对,

而关联子查询就需要循环迭代:

select from A where not exists (select 1 from B where Bx = ax and ) //关联子查询扫描 A 表的每一条记录 rA:     扫描 B 表,找到其中的第一条满足 rA 条件的记录。

显然,关联子查询的扫描成本会高于非关联子查询。

我们希望 MySQL 能先"缓存"子查询的结果(缓存这一步叫物化,MATERIALIZATION),但MySQL 认为不缓存更快,我们就需要给予 MySQL 一定指导。

可以看到执行时间变成了 067s。

整理

我们诊断的关键点如下:

\1 对于 information_schema 中的元数据表,执行计划不能提供有效信息。

\2 通过查看 MySQL 改写后的 SQL,我们猜测了优化器发生了误判。

\3 我们增加了 hint,指导 MySQL 正确进行优化判断。

但目前我们的实验仅限于猜测,猜中了万事大吉,猜不中就无法做出好的诊断。

十万条数据已经够多了,通常最好的办法就是创建索引,创建索引的命令: CREATE INDEX index_name ON table_name(index_col_name,);

index_name:这是索引的创建名称,你自己命一个名称。

table_name:这是数据表名称,你的应该是ware_detail。

index_col_name:为哪一列数据创建索引,这个项目很重要,你的可以写ware_type,请确保这行是不是数字类型,因为数据类型比字符类型查询速度更快,最好将这一行设置一个固定长度,这样查询速度更快,如果这个行数据长度能短一点更好,越短就意味着查询速度越快。

以上就是关于php+mysql在数据库里数据大的话查询很慢全部的内容,包括:php+mysql在数据库里数据大的话查询很慢、求高手优化MySQL数据库,数据库反应太慢。、mysql数据库有100万+数据,查询起来很慢了,如何优化等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10168631.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-06
下一篇 2023-05-06

发表评论

登录后才能评论

评论列表(0条)

保存