hadoop与传统的关系型数据库(如oracle)相比,有什么优势及劣势

hadoop与传统的关系型数据库(如oracle)相比,有什么优势及劣势,第1张

hadoop的hdfs支持海量数据量存储 mapreduce支持对海量数据的分布式处理

oracle虽然可以搭建集群 但是当数据量达到一定限度之后查询处理速度会变得很慢 且对机器性能要求很高

其实这两个东西不是同类 hadoop是一个分布式云处理架构,倾向于数据计算 而oracle是一个关系型数据库,倾向于数据存储。要说比较可以比较hbase与oracle。

hbase是一种nosql数据库,列式数据库,支持海量数据存储,支持列的扩展,但是查询 *** 作较复杂,不如oracle这类关系型数据库简单,且只支持一个索引,但是Hbase在表结构设置合理情况下,查询速度跟数据量大小没有太大关系,即数据量的大小不会影响到查询速度,顺便说句Hbase查询速度可以达到ms级

提供海量数据存储和计算的,需要java语言基础。

Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。

特点

1、快照支持在一个特定时间存储一个数据拷贝,快照可以将失效的集群回滚到之前一个正常的时间点上。HDFS已经支持元数据快照。

2、HDFS的设计是用于支持大文件的。运行在HDFS上的程序也是用于处理大数据集的。这些程序仅写一次数据,一次或多次读数据请求,并且这些读 *** 作要求满足流式传输速度。

HDFS支持文件的一次写多次读 *** 作。HDFS中典型的块大小是64MB,一个HDFS文件可以被切分成多个64MB大小的块,如果需要,每一个块可以分布在不同的数据节点上。

3、阶段状态:一个客户端创建一个文件的请求并不会立即转发到名字节点。实际上,一开始HDFS客户端将文件数据缓存在本地的临时文件中。

大数据平台包含了采集层、存储层、计算层和应用层,是一个复杂的IT系统,需要学会Hadoop等分布式系统的开发技能。

11采集层:Sqoop可用来采集导入传统关系型数据库的数据、Flume对于日志型数据采集,另外使用Python一类的语言开发网络爬虫获取网络数据;

12储存层:分布式文件系统HDFS最为常用;采用了主从(Master/Slave)结构模型,一个HDFS集群是由一个NameNode和若干个DataNode组成的。其中NameNode作为主服务器,管理文件系统的命名空间和客户端对文件的访问 *** 作;集群中的DataNode管理存储的数据。

13计算层:有不同的计算框架可以选择,常见的如MapReduce、Spark等,一般来讲,如果能使用计算框架的“原生语言”,运算效率会最高(MapReduce的原生支持Java,而Spark原生支持Scala);

14应用层:包括结果数据的可视化、交互界面开发以及应用管理工具的开发等,更多的用到Java、Python等通用IT开发前端、后端的能力;

hdfs的数据实际上是存储在本地文件系统中的。在配置hadoop时你需要配置hdfs的存储文件夹,如果你的用户名为root,文件夹位置是/root/tmp。那么你的hdfs的数据存储在/root/tmp/dfs/data/current中。其中block是块文件,也就是数据文件,meta是元数据。hadoop是java写的,因此hadoop存储的数据的方式使用的也是java的方式。

通常数据库分为关系型数据库和非关系型数据库,关系型数据库的优势到现在也是无可替代的,比如MySQL、SQL Server、Oracle、DB2、SyBase、Informix、PostgreSQL以及比较小型的Access等等数据库,这些数据库支持复杂的SQL *** 作和事务机制,适合小量数据读写场景;但是到了大数据时代,人们更多的数据和物联网加入的数据已经超出了关系数据库的承载范围。

大数据时代初期,随着数据请求并发量大不断增大,一般都是采用的集群同步数据的方式处理,就是将数据库分成了很多的小库,每个数据库的数据内容是不变的,都是保存了源数据库的数据副本,通过同步或者异步方式保证数据的一致性,每个库设定特定的读写方式,比如主数据库负责写 *** 作,从数据库是负责读 *** 作,等等根据业务复杂程度以此类推,将业务在物理层面上进行了分离,但是这种方式依旧存在一定的负载压力的问题,企业数据在不断的扩增中,后面就采用分库分表的方式解决,对读写负载进行分离,但是这种实现依旧存在不足,且需要不断进行数据库服务器扩容。

NoSQL数据库大致分为5种类型

1、列族数据库:BigTable、HBase、Cassandra、Amazon SimpleDB、HadoopDB等,下面简单介绍几个

(1)Cassandra:Cassandra是一个列存储数据库,支持跨数据中心的数据复制。它的数据模型提供列索引,log-structured修改,支持反规范化,实体化视图和嵌入超高速缓存。

(2)HBase:Apache Hbase源于Google的Bigtable,是一个开源、分布式、面向列存储的模型。在Hadoop和HDFS之上提供了像Bigtable一样的功能。

(3)Amazon SimpleDB:Amazon SimpleDB是一个非关系型数据存储,它卸下数据库管理的工作。开发者使用Web服务请求存储和查询数据项

(4)Apache Accumulo:Apache Accumulo的有序的、分布式键值数据存储,基于Google的BigTable设计,建立在Apache Hadoop、Zookeeper和Thrift技术之上。

(5)Hypertable:Hypertable是一个开源、可扩展的数据库,模仿Bigtable,支持分片。

(6)Azure Tables:Windows Azure Table Storage Service为要求大量非结构化数据存储的应用提供NoSQL性能。表能够自动扩展到TB级别,能通过REST和Managed API访问。

2、键值数据库:Redis、SimpleDB、Scalaris、Memcached等,下面简单介绍几个

(1)Riak:Riak是一个开源,分布式键值数据库,支持数据复制和容错。(2)Redis:Redis是一个开源的键值存储。支持主从式复制、事务,Pub/Sub、Lua脚本,还支持给Key添加时限。

(3)Dynamo:Dynamo是一个键值分布式数据存储。它直接由亚马逊Dynamo数据库实现;在亚马逊S3产品中使用。

(4)Oracle NoSQL Database:来自Oracle的键值NoSQL数据库。它支持事务ACID(原子性、一致性、持久性和独立性)和JSON。

(5)Oracle NoSQL Database:具备数据备份和分布式键值存储系统。

(6)Voldemort:具备数据备份和分布式键值存储系统。

(7)Aerospike:Aerospike数据库是一个键值存储,支持混合内存架构,通过强一致性和可调一致性保证数据的完整性。

3、文档数据库:MongoDB、CouchDB、Perservere、Terrastore、RavenDB等,下面简单介绍几个

(1)MongoDB:开源、面向文档,也是当下最人气的NoSQL数据库。

(2)CounchDB:Apache CounchDB是一个使用JSON的文档数据库,使用Javascript做MapReduce查询,以及一个使用>

存放到HDFS 一般都是要分析的数据。分析完成的数据直接存储到MYSQL 或者ORACLE 中。这种处理方式是离线处理。如日志文件存储到hdfs 分析出网站的流量 UV PV 等等。一般都是用pig hive 和mr 等进行分析的。

存放到HBASE 一般都是数据拿过来直接用的。而且他是实时的。也就是说数据就是成型的而且不需要进行分析就能得到结果的数据。

大致就是这么个意思。有点啰嗦了。

MRS集群处理的数据源来源于OBS或HDFS,HDFS是Hadoop分布式文件系统(Hadoop Distributed File System),OBS(Object Storage Service)即华为对象存储服务,是一个基于对象的海量存储服务,为客户提供海量、安全、高可靠、低成本的数据存储能力。MRS可以直接处理OBS中的数据,客户可以基于云管理平台Web界面和OBS客户端对数据进行浏览、管理和使用,同时可以通过REST API接口方式单独或集成到业务程序进行管理和访问数据。

数据存储在OBS:数据存储和计算分离,集群存储成本低,存储量不受限制,并且集群可以随时删除,但计算性能取决于OBS访问性能,相对HDFS有所下降,建议在数据计算不频繁场景下使用。

数据存储在HDFS:数据存储和计算不分离,集群成本较高,计算性能高,但存储量受磁盘空间限制,删除集群前需将数据导出保存,建议在数据计算频繁场景下使用。

以上就是关于hadoop与传统的关系型数据库(如oracle)相比,有什么优势及劣势全部的内容,包括:hadoop与传统的关系型数据库(如oracle)相比,有什么优势及劣势、hadoop是做什么的、HDFS由什么组成等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10180386.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-06
下一篇 2023-05-06

发表评论

登录后才能评论

评论列表(0条)

保存