hive是hadoop的延申。
hadoop是一个分布式的软件处理框架,hive是一个提供了查询功能的数据仓库,而hadoop底层的hdfs为hive提供了数据存储。
hive将用户提交的SQL解析成mapreduce任务供hadoop直接运行,结合两者的优势,进行数据决策。一个擅长大数据并行计算,一个支持SQL数据查询,方便是显而易见的。但hive只要还是读 *** 作
有了Hive之后,人们发现SQL对比Java有巨大的优势。一个是它太容易写了。刚才词频的东西,用SQL描述就只有一两MapReduce写起来大约要几十上百行。
扩展资料:
它主要有以下几个优点 :
1、高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖 。
2、高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中 。
3、高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。
4、高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。
低成本。与一体机、商用数据仓库以及QlikView、Yonghong Z-Suite等数据集市相比,hadoop是开源的,项目的软件成本因此会大大降低 。
Hadoop带有用Java语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++ 。
简单来说hive用来批量处理数据,HBase用来快速索引数据。
HBase是一个分布式的基于列存储的非关系型数据库。HBase的查询效率很高,主要由于查询和展示结果。
hive是分布式的关系型数据库。主要用来并行分布式 处理 大量数据。hive中的所有查询除了"select from table;"都是需要通过Map\Reduce的方式来执行的。由于要走Map\Reduce,即使一个只有1行1列的表,如果不是通过select from table;方式来查询的,可能也需要8、9秒。但hive比较擅长处理大量数据。当要处理的数据很多,并且Hadoop集群有足够的规模,这时就能体现出它的优势。
通过hive的存储接口,hive和Hbase可以整合使用。参见:>
hive的中文意思为蜂房;蜂箱;一箱蜜蜂;蜂群;忙碌的场所;繁忙的地方;把蜜蜂收入蜂箱。
hive可作动词和名词使用。英式读法[haɪv],美式读法[haɪv]。
1、作名词时的中文意思为蜂房;蜂箱;一箱蜜蜂;蜂群;忙碌的场所;繁忙的地方。
a structure made for bees to live in
蜜蜂居住的地方。
2、作动词时的中文意思为把蜜蜂收入蜂箱;贮备;聚居;从团体中分出。
The IT department is being hived off into a new company
信息技术部正被分离出来,成立新公司。
扩展资料:
一、hive的近义词
swarm
英式读音[swɔːm];美式读音[swɔːrm]
名词(n)一大群(蜜蜂等昆虫);一大群;一大批(向同方向移动的人)
动词(V)成群地来回移动;成群地飞来飞去
A dark cloud of bees comes swarming out of the hive
黑压压的一大群蜜蜂从蜂巢中飞出来。
二、短语用例
hive off
转让,出售(部分业务)
应该是Hadoop在hbase和Hive中的作用吧。 hbase与hive都是架构在hadoop之上的。都是用hadoop作为底层存储。而hbase是作为分布式数据库,而hive是作为分布式数据仓库。当然hive还是借用hadoop的MapReduce来完成一些hive中的命令的执行。而hbase与hive都是单独安装的。你需要哪个安装哪个,所以不存在重复信息。
当然不是,hive支持jdbc和odbc数据源连接,可以连接很多种数据库,mysql、oracle等等等等,它自己的metastore用的就是derbyDB。
具体的连接方法在官网上有说明,使用odbc需要重新编译相关组件。hive通过jdbc连接其他数据库的教程在google上一搜一大堆。
hbase和hive的主要区别是:他们对于其内部的数据的存储和管理方式是不同的,hbase其主要特点是仿照bigtable的列势存储,对于大型的数据的存储,查询比传统数据库有巨大的优势,而hive其产生主要应对的数据仓库问题,其将存在在hdfs上的文件目录结构映射成表。主要关注的是对数据的统计等方面。适合的场景:hbase:适合大型数据存储,其作用可以类比于传统数据库的作用,主要关注的数据的存取。hive:适合大数据的管理,统计,处理,其作用类比于传统的数据仓库,主要关注的数据的处理。总结:应对大数据的时候,如果你偏重于数据存储查询hbase无疑是更加适合,而你关注的是对大数据的处理结果查询,比如你查询的时候有类似于count,sum等函数 *** 作 hive就能满足你的需求,一般有些项目都输在hive里面进行数据处理,然后将结果导入mysql等数据库或者hbase中进行查询,至于mysql与hbase的选择 比较倾向于你的处理之后的数据量
以上就是关于hadoop和hive之间有什么关系全部的内容,包括:hadoop和hive之间有什么关系、Hbase和Hive在Hadoop中的功能有什么联系他们怎么分别作业的.两个数据库不会有重复信息导致资源浪费吗、Hive 是什么意思等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)