实例讲解MYSQL数据库的查询优化技术
作者:佚名 文章来源:未知 点击数:2538 更新时间:2006-1-19
数据库系统是管理信息系统的核心,基于数据库的联机事务处理(OLTP)以及联机分析处理(OLAP)是银行、企业、政府等部门最为重要的计算机应用之一。从大多数系统的应用实例来看,查询 *** 作在各种数据库 *** 作中所占据的比重最大,而查询 *** 作所基于的SELECT语句在SQL语句中又是代价最大的语句。举例来说,如果数据的量积累到一定的程度,比如一个银行的账户数据库表信息积累到上百万甚至上千万条记录,全表扫描一次往往需要数十分钟,甚至数小时。如果采用比全表扫描更好的查询策略,往往可以使查询时间降为几分钟,由此可见查询优化技术的重要性。
笔者在应用项目的实施中发现,许多程序员在利用一些前端数据库开发工具(如PowerBuilder、Delphi等)开发数据库应用程序时,只注重用户界面的华丽,并不重视查询语句的效率问题,导致所开发出来的应用系统效率低下,资源浪费严重。因此,如何设计高效合理的查询语句就显得非常重要。本文以应用实例为基础,结合数据库理论,介绍查询优化技术在现实系统中的运用。
分析问题
许多程序员认为查询优化是DBMS(数据库管理系统)的任务,与程序员所编写的SQL语句关系不大,这是错误的。一个好的查询计划往往可以使程序性能提高数十倍。查询计划是用户所提交的SQL语句的集合,查询规划是经过优化处理之后所产生的语句集合。DBMS处理查询计划的过程是这样的:在做完查询语句的词法、语法检查之后,将语句提交给DBMS的查询优化器,优化器做完代数优化和存取路径的优化之后,由预编译模块对语句进行处理并生成查询规划,然后在合适的时间提交给系统处理执行,最后将执行结果返回给用户。在实际的数据库产品(如Oracle、Sybase等)的高版本中都是采用基于代价的优化方法,这种优化能根据从系统字典表所得到的信息来估计不同的查询规划的代价,然后选择一个较优的规划。虽然现在的数据库产品在查询优化方面已经做得越来越好,但由用户提交的SQL语句是系统优化的基础,很难设想一个原本糟糕的查询计划经过系统的优化之后会变得高效,因此用户所写语句的优劣至关重要。系统所做查询优化我们暂不讨论,下面重点说明改善用户查询计划的解决方案。
解决问题
下面以关系数据库系统Informix为例,介绍改善用户查询计划的方法。
1.合理使用索引
索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。索引的使用要恰到好处,其使用原则如下:
●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。
●在频繁进行排序或分组(即进行group by或order by *** 作)的列上建立索引。
●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。
●如果待排序的列有多个,可以在这些列上建立复合索引(compound index)。
●使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁 *** 作而使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量数据后,删除并重建索引可以提高查询速度。
2.避免或简化排序
应当简化或避免对大型表进行重复的排序。当能够利用索引自动以适当的次序产生输出时,优化器就避免了排序的步骤。以下是一些影响因素:
●索引中不包括一个或几个待排序的列;
●group by或order by子句中列的次序与索引的次序不一样;
●排序的列来自不同的表。
为了避免不必要的排序,就要正确地增建索引,合理地合并数据库表(尽管有时可能影响表的规范化,但相对于效率的提高是值得的)。如果排序不可避免,那么应当试图简化它,如缩小排序的列的范围等。
3.消除对大型表行数据的顺序存取
在嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询10亿行数据。避免这种情况的主要方法就是对连接的列进行索引。例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。如果两个表要做连接,就要在“学号”这个连接字段上建立索引。
还可以使用并集来避免顺序存取。尽管在所有的检查列上都有索引,但某些形式的where子句强迫优化器使用顺序存取。下面的查询将强迫对orders表执行顺序 *** 作:
SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008
虽然在customer_num和order_num上建有索引,但是在上面的语句中优化器还是使用顺序存取路径扫描整个表。因为这个语句要检索的是分离的行的集合,所以应该改为如下语句:
SELECT * FROM orders WHERE customer_num=104 AND order_num>1001
UNION
SELECT * FROM orders WHERE order_num=1008
这样就能利用索引路径处理查询。
4.避免相关子查询
一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。
5.避免困难的正规表达式
MATCHES和LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _”
即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如果把语句改为SELECT * FROM customer WHERE zipcode >“98000”,在执行查询时就会利用索引来查询,显然会大大提高速度。
另外,还要避免非开始的子串。例如语句:SELECT * FROM customer WHERE zipcode[2,3]>“80”,在where子句中采用了非开始子串,因而这个语句也不会使用索引。
6.使用临时表加速查询
把表的一个子集进行排序并创建临时表,有时能加速查询。它有助于避免多重排序 *** 作,而且在其他方面还能简化优化器的工作。例如:
SELECT custname,rcvblesbalance,……other columns
FROM cust,rcvbles
WHERE custcustomer_id = rcvlbescustomer_id
AND rcvbllsbalance>0
AND custpostcode>“98000”
ORDER BY custname
如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个临时文件中,并按客户的名字进行排序:
SELECT custname,rcvblesbalance,……other columns
FROM cust,rcvbles
WHERE custcustomer_id = rcvlbescustomer_id
AND rcvbllsbalance>0
ORDER BY custname
INTO TEMP cust_with_balance
然后以下面的方式在临时表中查询:
SELECT * FROM cust_with_balance
WHERE postcode>“98000”
临时表中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘I/O,所以查询工作量可以得到大幅减少。
注意:临时表创建后不会反映主表的修改。在主表中数据频繁修改的情况下,注意不要丢失数据。
7.用排序来取代非顺序存取
非顺序磁盘存取是最慢的 *** 作,表现在磁盘存取臂的来回移动。SQL语句隐藏了这一情况,使得我们在写应用程序时很容易写出要求存取大量非顺序页的查询。
有些时候,用数据库的排序能力来替代非顺序的存取能改进查询。
实例分析
下面我们举一个制造公司的例子来说明如何进行查询优化。制造公司数据库中包括3个表,模式如下所示:
1.part表
零件号 零件描述其他列
(part_num) (part_desc)(other column)
102,032 Seageat 30G disk ……
500,049 Novel 10M network card……
……
2.vendor表
厂商号厂商名其他列
(vendor _num) (vendor_name) (other column)
910,257 Seageat Corp ……
523,045 IBM Corp ……
……
3.parven表
零件号 厂商号 零件数量
(part_num) (vendor_num) (part_amount)
102,032910,2573,450,000
234,423321,0014,000,000
……
下面的查询将在这些表上定期运行,并产生关于所有零件数量的报表:
SELECT part_desc,vendor_name,part_amount
FROM part,vendor,parven
WHERE partpart_num=parvenpart_num
AND parvenvendor_num = vendorvendor_num
ORDER BY partpart_num
如果不建立索引,上述查询代码的开销将十分巨大。为此,我们在零件号和厂商号上建立索引。索引的建立避免了在嵌套中反复扫描。关于表与索引的统计信息如下:
表 行尺寸 行数量 每页行数量 数据页数量
(table) (row size) (Row count) (Rows/Pages) (Data Pages)
part150 10,00025 400
Vendor 150 1,000 25 40
Parven 13 15,000300 50
索引 键尺寸 每页键数量 页面数量
(Indexes) (Key Size) (Keys/Page) (Leaf Pages)
part 4500 20
Vendor4500 2
Parven8250 60
看起来是个相对简单的3表连接,但是其查询开销是很大的。通过查看系统表可以看到,在part_num上和vendor_num上有簇索引,因此索引是按照物理顺序存放的。parven表没有特定的存放次序。这些表的大小说明从缓冲页中非顺序存取的成功率很小。此语句的优化查询规划是:首先从part中顺序读取400页,然后再对parven表非顺序存取1万次,每次2页(一个索引页、一个数据页),总计2万个磁盘页,最后对vendor表非顺序存取15万次,合3万个磁盘页。可以看出在这个索引好的连接上花费的磁盘存取为504万次。
实际上,我们可以通过使用临时表分3个步骤来提高查询效率:
1.从parven表中按vendor_num的次序读数据:
SELECT part_num,vendor_num,price
FROM parven
ORDER BY vendor_num
INTO temp pv_by_vn
这个语句顺序读parven(50页),写一个临时表(50页),并排序。假定排序的开销为200页,总共是300页。
2.把临时表和vendor表连接,把结果输出到一个临时表,并按part_num排序:
SELECT pv_by_vn,* vendorvendor_num
FROM pv_by_vn,vendor
WHERE pv_by_vnvendor_num=vendorvendor_num
ORDER BY pv_by_vnpart_num
INTO TMP pvvn_by_pn
DROP TABLE pv_by_vn
这个查询读取pv_by_vn(50页),它通过索引存取vendor表15万次,但由于按vendor_num次序排列,实际上只是通过索引顺序地读vendor表(40+2=42页),输出的表每页约95行,共160页。写并存取这些页引发5*160=800次的读写,索引共读写892页。
3.把输出和part连接得到最后的结果:
SELECT pvvn_by_pn*,partpart_desc
FROM pvvn_by_pn,part
WHERE pvvn_by_pnpart_num=partpart_num
DROP TABLE pvvn_by_pn
这样,查询顺序地读pvvn_by_pn(160页),通过索引读part表15万次,由于建有索引,所以实际上进行1772次磁盘读写,优化比例为30∶1。笔者在Informix Dynamic
Sever上做同样的实验,发现在时间耗费上的优化比例为5∶1(如果增加数据量,比例可能会更大)。
小结
20%的代码用去了80%的时间,这是程序设计中的一个著名定律,在数据库应用程序中也同样如此。我们的优化要抓住关键问题,对于数据库应用程序来说,重点在于SQL的执行效率。查询优化的重点环节是使得数据库服务器少从磁盘中读数据以及顺序读页而不是非顺序读页。
几个简单的步骤大幅提高Oracle性能 我优化数据库的三板斧
数据库优化的讨论可以说是一个永恒的主题 资深的Oracle优化人员通常会要求提出性能问题的人对数据库做一个statspack 贴出数据库配置等等 还有的人认为要抓出执行最慢的语句来进行优化 但实际情况是 提出疑问的人很可能根本不懂执行计划 更不要说statspack了 而我认为 数据库优化 应该首先从大的方面考虑 网络 服务器硬件配置 *** 作系统配置 Oracle服务器配置 数据结构组织 然后才是具体的调整 实际上网络 硬件等往往无法决定更换 应用程序一般也无法修改 因此应该着重从数据库配置 数据结构上来下手 首先让数据库有一个良好的配置 然后再考虑具体优化某些过慢的语句 我在给我的用户系统进行优化的过程中 总结了一些基本的 简单易行的办法来优化数据库 算是我的三板斧 呵呵 不过请注意 这些不一定普遍使用 甚至有的会有副作用 但是对OLTP系统 基于成本的数据库往往行之有效 不妨试试 (注 附件是Burleson写的用来报告数据库性能等信息的脚本 本文用到)
一.设置合适的SGA
常常有人抱怨服务器硬件很好 但是Oracle就是很慢 很可能是内存分配不合理造成的 ( )假设内存有 M 这通常是小型应用 建议Oracle的SGA大约 M 其中 共享池(SHARED_POOL_SIZE)可以设置 M到 M 根据实际的用户数 查询等来定 数据块缓冲区可以大致分配 M M i下需要设置DB_BLOCK_BUFFERS DB_BLOCK_BUFFERDB_BLOCK_SIZE等于数据块缓冲区大小 i 下的数据缓冲区可以用db_cache_size来直接分配
( )假设内存有 G Oracle 的SGA可以考虑分配 M 共享池分配 M到 M 数据缓冲区分配 M到 M
( )内存 G SGA可以考虑分配 G 共享池 M到 M 剩下的给数据块缓冲区
( )内存 G以上 共享池 M到 M就足够啦 再多也没有太大帮助 (Biti_rainy有专述)数据缓冲区是尽可能的大 但是一定要注意两个问题 一是要给 *** 作系统和其他应用留够内存 二是对于 位的 *** 作系统 Oracle的SGA有 G的限制 有的 位 *** 作系统上可以突破这个限制 方法还请看Biti的大作吧
二.分析表和索引 更改优化模式
Oracle默认优化模式是CHOOSE 在这种情况下 如果表没有经过分析 经常导致查询使用全表扫描 而不使用索引 这通常导致磁盘I/O太多 而导致查询很慢 如果没有使用执行计划稳定性 则应该把表和索引都分析一下 这样可能直接会使查询速度大幅提升 分析表命令可以用ANALYZE TABLE 分析索引可以用ANALYZE INDEX命令 对于少于 万的表 可以考虑分析整个表 对于很大的表 可以按百分比来分析 但是百分比不能过低 否则生成的统计信息可能不准确 可以通过DBA_TABLES的LAST_ANALYZED列来查看表是否经过分析或分析时间 索引可以通过DBA_INDEXES的LAST_ANALYZED列
下面通过例子来说明分析前后的速度对比 (表CASE_GA_AJZLZ大约有 万数据 有主键)首先在SQLPLUS中打开自动查询执行计划功能 (第一次要执行\RDBMS\ADMIN\utlxplan sql来创建PLAN_TABLE这个表)
SQL> SET AUTOTRACE ON SQL>SET TIMING ON
通过SET AUTOTRACE ON 来查看语句的执行计划 通过SET TIMING ON 来查看语句运行时间
SQL> select count() from CASE_GA_AJZLZ; COUNT() 已用时间: : : Execution Plan SELECT STATEMENT Optimizer=CHOOSE SORT (AGGREGATE) TABLE ACCESS (FULL) OF CASE_GA_AJZLZ ……………………
请注意上面分析中的TABLE ACCESS(FULL) 这说明该语句执行了全表扫描 而且查询使用了 秒 这时表还没有经过分析 下面我们来对该表进行分析
SQL> yze table CASE_GA_AJZLZ pute statistics;
表已分析 已用时间: : : 然后再来查询
SQL> select count() from CASE_GA_AJZLZ; COUNT() 已用时间: : : Execution Plan SELECT STATEMENT Optimizer=FIRST_ROWS (Cost= Card= ) SORT (AGGREGATE) INDEX (FAST FULL SCAN) OF PK_AJZLZ (UNIQUE) (Cost= Card= ) …………………………
请注意 这次时间仅仅用了 秒!这要归功于INDEX(FAST FULL SCAN) 通过分析表 查询使用了PK_AJZLZ索引 磁盘I/O大幅减少 速度也大幅提升!下面的实用语句可以
用来生成分析某个用户的所有表和索引 假设用户是GAXZUSR
SQL> set pagesize SQL> spool d:\ yze_tables sql; SQL> select yze table ||owner|| ||table_name|| pute statistics; from dba_tables where owner= GAXZUSR ; SQL> spool off SQL> spool spool d:\ yze_indexes sql; SQL> select yze index ||owner|| ||index_name|| pute statistics; from dba_indexes where owner= GAXZUSR ; SQL> spool off SQL> @d:\ yze_tables sql SQL> @d:\ yze_indexes sql
解释 上面的语句生成了两个sql文件 分别分析全部的GAXZUSR的表和索引 如果需要按照百分比来分析表 可以修改一下脚本 通过上面的步骤 我们就完成了对表和索引的分析 可以测试一下速度的改进啦 建议定期运行上面的语句 尤其是数据经过大量更新
当然 也可以通过dbms_stats来分析表和索引 更方便一些 但是我仍然习惯上面的方法 因为成功与否会直接提示出来
另外 我们可以将优化模式进行修改 optimizer_mode值可以是RULE CHOOSE FIRST_ROWS和ALL_ROWS 对于OLTP系统 可以改成FIRST_ROWS 来要求查询尽快返回结果 这样即使不用分析 在一般情况下也可以提高查询性能 但是表和索引经过分析后有助于找到最合适的执行计划
三.设置cursor_sharing=FORCE 或SIMILAR
这种方法是 i才开始有的 oracle 不支持 通过设置该参数 可以强制共享只有文字不同的语句解释计划 例如下面两条语句可以共享
SQL> SELECT FROM MYTABLE WHERE NAME= tom SQL> SELECT FROM MYTABLE WHERE NAME= turner
这个方法可以大幅降低缓冲区利用率低的问题 避免语句重新解释 通过这个功能 可以很大程度上解决硬解析带来的性能下降的问题 个人感觉可根据系统的实际情况 决定是否将该参数改成FORCE 该参数默认是exact 不过一定要注意 修改之前 必须先给ORACLE打补丁 否则改之后oracle会占用 %的CPU 无法使用 对于ORACLE i 可以设置成SIMILAR 这个设置综合了FORCE和EXACT的优点 不过请慎用这个功能 这个参数也可能带来很大的负面影响!
四.将常用的小表 索引钉在数据缓存KEEP池中
内存上数据读取速度远远比硬盘中读取要快 据称 内存中数据读的速度是硬盘的 倍!如果资源比较丰富 把常用的小的 而且经常进行全表扫描的表给钉内存中 当然是在好不过了 可以简单的通过ALTER TABLE tablename CACHE来实现 在ORACLE i之后可以使用ALTER TABLE table STORAGE(BUFFER_POOL KEEP) 一般来说 可以考虑把 数据块之内的表放在keep池中 当然要根据内存大小等因素来定 关于如何查出那些表或索引符合条件 可以使用本文提供的access sql和access_report sql 这两个脚本是著名的Oracle专家 Burleson写的 你也可以在读懂了情况下根据实际情况调整一下脚本 对于索引 可以通过ALTER INDEX indexname STORAGE(BUFFER_POOL KEEP)来钉在KEEP池中
将表定在KEEP池中需要做一些准备工作 对于ORACLE i 需要设置DB_KEEP_CACHE_SIZE 对于 i 需要设置buffer_pool_keep 在 i中 还要修改db_block_lru_latches 该参数默认是 无法使用buffer_pool_keep 该参数应该比 CPU数量少 但是要大于 才能设置DB_KEEP_CACHE_BUFFER buffer_pool_keep从db_block_buffers中分配 因此也要小于db_block_buffers 设置好这些参数后 就可以把常用对象永久钉在内存里
五.设置optimizer_max_permutations
对于多表连接查询 如果采用基于成本优化(CBO) ORACLE会计算出很多种运行方案
从中选择出最优方案 这个参数就是设置oracle究竟从多少种方案来选择最优 如果设置太大 那么计算最优方案过程也是时间比较长的 Oracle 和 i默认是 建议改成 对于 i 已经默认是 了
六.调整排序参数
( ) SORT_AREA_SIZE:默认的用来排序的SORT_AREA_SIZE大小是 K 通常显得有点小 一般可以考虑设置成 M( ) 这个参数不能设置过大 因为每个连接都要分配同样的排序内存
lishixinzhi/Article/program/Oracle/201311/18879
在JAVA开发中数据库的学习也是我们需要了解的,截下来几篇文章都是关于数据库的设计和应用,那么java课程培训机构废话不多说开始学习吧!
数据库的设计
数据库设计是基础,数据库优化是建立在设计基础之上的。好的数据库一定拥有好的设计。
数据库设计的目标是为用户和各种应用系统提供一个信息基础设施和高效的运行环境。
数据库的三大范式
第一范式1NF:所有的域都应该是原子性的,即数据库表的每一列都是不可分割的原子数据项,而不能是集合,数组,记录等非原子数据项。
第二范式2Nf:第二范式在第一范式的基础之上更进一层。第二范式需要确保数据库表中的每一列都和主键相关,而不能只与主键的某一部分相关(主要针对联合主键而言)。也就是说在一个数据库表中,一个表中只能保存一种数据,不可以把多种数据保存在同一张数据库表中。
第三范式3Nf:所有字段必须与主键直接相关,而不是间接相关。也可以理解为字段不要和其他非主键字段相关
注意:这三个范式尽可能去遵守,不是一定要墨守成规这只是让我们设计的表的时候,越靠近这些范式,可以使字段尽量的减小冗余但是有时候也可以根据实际需要小小的违背一下但是第三范式违反一下还可以接受,但是第一范式别违反
数据库设计的步骤
需求分析阶段
准确了解与分析用户需求(包括数据与处理)。是整个设计过程的基础,是最困难、最耗费时间的一步。
概念结构设计阶段
是整个数据库设计的关键--设计数据库的E-R模型图,确认需求信息的正确和完整
Entity_Relationship---实体之间的关系
一对一
一对多
多对一
你好!如果有大量的访问用到调取到数据库时,往往查询速度会变得很慢,所以我们需要进行优化处理。
优化从三个方面考虑:
SQL语句优化、
主从复制,读写分离,负载均衡、
数据库分库分表。
一、SQL查询语句优化
1、使用索引
建立索引可以使查询速度得到提升,我们首先应该考虑在where及orderby,groupby涉及的列上建立索引。
2、借助explain(查询优化神器)选择更好的索引和优化查询语句
SQL的Explain通过图形化或基于文本的方式详细说明了SQL语句的每个部分是如何执行以及何时执行的,以及执行效果。通过对选择更好的索引列,或者对耗时久的SQL语句进行优化达到对查询速度的优化。
3、任何地方都不要使用SELECTFROM语句。
4、不要在索引列做运算或者使用函数
5、查询尽可能使用limit来减少返回的行数
6、使用查询缓存,并将尽量多的内存分配给MYSQL做缓存
二、主从复制,读写分离,负载均衡
目前大多数的主流关系型数据库都提供了主从复制的功能,通过配置两台(或多台)数据库的主从关系,可以将一台数据库服务器的数据更新同步到另一台服务器上。网站可以利用数据库这一功能,实现数据库的读写分离,从而改善数据库的负载压力。一个系统的读 *** 作远远多于写 *** 作,因此写 *** 作发向master,读 *** 作发向slaves进行 *** 作(简单的轮询算法来决定使用哪个slave)。
利用数据库的读写分离,Web服务器在写数据的时候,访问主数据库(master),主数据库通过主从复制将数据更新同步到从数据库(slave),这样当Web服务器读数据的时候,就可以通过从数据库获得数据。这一方案使得在大量读 *** 作的Web应用可以轻松地读取数据,而主数据库也只会承受少量的写入 *** 作,还可以实现数据热备份,可谓是一举两得。
三、数据库分表、分区、分库
1、分表
通过分表可以提高表的访问效率。有两种拆分方法:
垂直拆分
在主键和一些列放在一个表中,然后把主键和另外的列放在另一个表中。如果一个表中某些列常用,而另外一些不常用,则可以采用垂直拆分。
水平拆分
根据一列或者多列数据的值把数据行放到两个独立的表中。
2、分区
分区就是把一张表的数据分成多个区块,这些区块可以在一个磁盘上,也可以在不同的磁盘上,分区后,表面上还是一张表,但是数据散列在多个位置,这样一来,多块硬盘同时处理不同的请求,从而提高磁盘I/O读写性能。实现比较简单,包括水平分区和垂直分区。
3、分库
分库是根据业务不同把相关的表切分到不同的数据库中,比如web、bbs、blog等库。
分库解决的是数据库端并发量的问题。分库和分表并不一定两个都要上,比如数据量很大,但是访问的用户很少,我们就可以只使用分表不使用分库。如果数据量只有1万,而访问用户有一千,那就只使用分库。
注意:分库分表最难解决的问题是统计,还有跨表的连接(比如这个表的订单在另外一张表),解决这个的方法就是使用中间件,比如大名鼎鼎的MyCat,用它来做路由,管理整个分库分表,乃至跨库跨表的连接
在进行软件开发过程中,数据库的使用是非常重要的,但是数据库有很多种,不同数据库的使用方法是不同的。进行软件开发过程中,至少需要掌握一种数据库的使用方法。SQL数据库语法简单、 *** 作方便和高效,是很多人最优的选择,但是SQL语句会受到不同数据库功能的影响,在计算时间和语言的效率上面需要进行优化,根据实际情况进行调整。下面电脑培训为大家介绍SQL数据库的优化方法。
一、适当的索引
索引基本上是一种数据结构,有助于加速整个数据检索过程。唯一索引是创建不重叠的数据列的索引。正确的索引可以更快地访问数据库,但是索引太多或没有索引会导致错误的结果。IT培训认为如果没有索引,处理速度会变得非常慢。
二、仅索引相关数据
指定需要检索数据的精度。使用命令和LIMIT代替SELECT。调整数据库时,必须使用所需的数据集而不是整个数据集,尤其是当数据源非常大时,指定所需的数据集,能够节省大部分时间。
三、根据需求使用或避免临时表
如果代码可以用简单的方式编写,那么永远不要使临时表变得复杂。当然,如果数据具有需要多个查询的特定程序,北大青鸟建议在这种情况下,使用临时表。临时表通常由子查询交替。
四、避免编码循环
避免编码循环是非常重要的,因为它会减慢整个序列的速度。通过使用具有单行的唯一UPDATE或INSERT命令来避免编码循环,并且北京北大青鸟发现WHERE命令能够确保存储的数据不被更新,这样能够方便在找到匹配和预先存在的数据时被找到。
以上就是关于数据库设计过程中,对于大批量的数据如何进行数据库优化全部的内容,包括:数据库设计过程中,对于大批量的数据如何进行数据库优化、优化数据库大幅度提高Oracle的性能、Mysql数据库的设计和优化等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)