大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等。
1、数据采集与预处理:FlumeNG实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据;Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。
2、数据存储:Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。
3、数据清洗:MapReduce作为Hadoop的查询引擎,用于大规模数据集的并行计算。
4、数据查询分析:Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供HQL(HiveSQL)查询功能。Spark启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。
5、数据可视化:对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。
Spark是处理海量数据的快速通用引擎。作为大数据处理技术,Spark经常会被人们拿来与Hadoop比较。
Hadoop已经成了大数据技术的事实标准,Hadoop MapReduce也非常适合于对大规模数据集合进行批处理 *** 作,但是其本身还存在一些缺陷。具体表现在:
1、Hadoop MapRedue的表达能力有限。所有计算都需要转换成Map和 Reduce两个 *** 作,不能适用于所有场景,对于复杂的数据处理过程难以描述。
2、磁盘I/O开销大。Hadoop MapReduce要求每个步骤间的数据序列化到磁盘,所以I/O成本很高,导致交互分析和迭代算法开销很大,而几乎所有的最优化和机器学习都是迭代的。所以,Hadoop MapReduce不适合于交互分析和机器学习。
3、计算延迟高。如果想要完成比较复杂的工作,就必须将一系列的MapReduce作业串联起来然后顺序执行这些作业。每一个作业都是高时延的,而且只有在前一个作业完成之后下一个作业才能开始启动。因此,Hadoop MapReduce不能胜任比较复杂的、多阶段的计算服务。
Spark借鉴Hadoop MapReduce技术发展而来,继承了其分布式并行计算的优点的同时,改进了MapReduce的许多缺陷。具体优势如下:
1、Spark提供广泛的数据集 *** 作类型(20+种),支持Java,Python和Scala API,支持交互式的Python和Scala的shell。比Hadoop更加通用。
2、Spark提供Cache机制来支持需要反复迭代的计算或者多次数据共享,减少数据读取的I/O开销。Spark使用内存缓存来提升性能,因此进行交互式分析也足够快速,缓存同时提升了迭代算法的性能,这使得Spark非常适合数据理论任务,特别是机器学习。
3、Spark提供了内存计算,把中间结果放到内存中,带来了更高的迭代运算效率。通过支持有向无环图(DAG)的分布式并行计算的编程框架,减少迭代过程中数据需要写入磁盘的需求,提高处理效率。
此外,Spark还能与Hadoop无缝衔接,Spark可以使用YARN作为它的集群管理器,可以读取HDFS、HBase等一切Hadoop的数据。
Spark在最近几年发展迅速,相较于其他大数据平台或框架,Spark的代码库最为活跃。截止目前,最新发布的版本为Spark330。
也有许多数据治理工具,为了实现实时、通用的数据治理而采用Spark技术。以飞算推出的SoData数据机器人为例,是一套实时+批次、批流一体、高效的数据开发治理工具,能够帮助企业快速实现数据应用。
相较于传统数据加工流程,SoData数据机器人实现了流批一体数据同步机制,基于Spark和Flink框架进行深度二次开发,实现数据采集、集成、转换、装载、加工、落盘全流程实时+批次处理的极致体验,秒级延迟,稳定高效平均延迟5-10s,快速响应企业数据应用需求。
除了具备Spark数据处理的优势,SoData数据机器人的Spark体系还支持从各种数据源执行SQL生成Spark字典表,边开发边调试的Spark-SQL开发,支持任意结果集输出到各类数据库。可视化的运维、开发方式也能在极大降低数据开发、治理、应用门槛的同时,提升效率。
在某综合医院的信息化建设中,SoData数据机器人曾在5分钟内完成原本需要8-9小时才能完成的数据迁移工作。
目前,SoData数据机器人已应用于金融、医疗、能源等多个行业,将持续通过创新技术,为各行业组织机构带来更优质、快速的数据开发、治理、应用体验。
转行这个词汇,一直是职场上此起彼伏的一个热门话题,相信很多朋友都想过或已经经历过转行。工作可谓是我们生存乃至生活的主要收入来源,谁都希望拥有一份高薪又稳定的工作,以此来改善自己的生活和实现自己的大大小小的梦想!但又担心转行后的工作待遇达不到自己的预期,顾虑重重……
不少想进入大数据分析行业的零基础学员经常会有这样一些疑问:大数据分析零基础应该怎么学习自己适合学习大数据分析吗人生,就是在不断地做选择,然后在这个选择过程中成长,让自己从一棵小树苗变成参天大树。就是我们每个对大数据充满幻想终于下定决心行动的学员的选择,我们给了自己4个月的时间,想要在大数据分析这个领域汲取养分,让自己壮大成长。
明确方向
通过国家的战略规划,看到BAT的大牛们都在大数据行业布局,新闻媒体追捧这大数据分析行业的项目和热点,我想如果我还没有能力独立判断的时候,跟着国家政策和互联网大佬们的步调走,这应该是错不了的。
付诸行动
明确了方向之后,我就整装待发,刚开始是在网络上购买了很多的视频教程,也买了很多书籍,但是最大的问题就在于,我不知道怎么入手,没关系,有信心有耐心肯定能战胜困难,我坚持了一个月,学习的节奏越来越乱,陆陆续续出现了很多的问题,没人指导,请教了几个业内的朋友,但对方工作繁忙,问了几次之后就不好意思了,自学陷入了死循环。
意识到我学习效率的低下,以及无人指导的问题想想未来的康庄大道,咬咬牙告诉自己,一定好好好学,不然就浪费太多时间最后还会是一无所获。最后找到组织(AAA教育)一起学习进步!
大数据分析零基础学习路线,有信心能坚持学习的话,那就当下开始行动吧!
一、大数据技术基础
1、linux *** 作基础
linux系统简介与安装
linux常用命令–文件 *** 作
linux常用命令–用户管理与权限
linux常用命令–系统管理
linux常用命令–免密登陆配置与网络管理
linux上常用软件安装
linux本地yum源配置及yum软件安装
linux防火墙配置
linux高级文本处理命令cut、sed、awk
linux定时任务crontab
2、shell编程
shell编程–基本语法
shell编程–流程控制
shell编程–函数
shell编程–综合案例–自动化部署脚本
3、内存数据库redis
redis和nosql简介
redis客户端连接
redis的string类型数据结构 *** 作及应用-对象缓存
redis的list类型数据结构 *** 作及应用案例-任务调度队列
redis的hash及set数据结构 *** 作及应用案例-购物车
redis的sortedset数据结构 *** 作及应用案例-排行榜
4、布式协调服务zookeeper
zookeeper简介及应用场景
zookeeper集群安装部署
zookeeper的数据节点与命令行 *** 作
zookeeper的java客户端基本 *** 作及事件监听
zookeeper核心机制及数据节点
zookeeper应用案例–分布式共享资源锁
zookeeper应用案例–服务器上下线动态感知
zookeeper的数据一致性原理及leader选举机制
5、java高级特性增强
Java多线程基本知识
Java同步关键词详解
java并发包线程池及在开源软件中的应用
Java并发包消息队里及在开源软件中的应用
Java JMS技术
Java动态代理反射
6、轻量级RPC框架开发
RPC原理学习
Nio原理学习
Netty常用API学习
轻量级RPC框架需求分析及原理分析
轻量级RPC框架开发
二、离线计算系统
1、hadoop快速入门
hadoop背景介绍
分布式系统概述
离线数据分析流程介绍
集群搭建
集群使用初步
2、HDFS增强
HDFS的概念和特性
HDFS的shell(命令行客户端) *** 作
HDFS的工作机制
NAMENODE的工作机制
java的api *** 作
案例1:开发shell采集脚本
3、MAPREDUCE详解
自定义hadoop的RPC框架
Mapreduce编程规范及示例编写
Mapreduce程序运行模式及debug方法
mapreduce程序运行模式的内在机理
mapreduce运算框架的主体工作流程
自定义对象的序列化方法
MapReduce编程案例
4、MAPREDUCE增强
Mapreduce排序
自定义partitioner
Mapreduce的combiner
mapreduce工作机制详解
5、MAPREDUCE实战
maptask并行度机制-文件切片
maptask并行度设置
倒排索引
共同好友
6、federation介绍和hive使用
Hadoop的HA机制
HA集群的安装部署
集群运维测试之Datanode动态上下线
集群运维测试之Namenode状态切换管理
集群运维测试之数据块的balance
HA下HDFS-API变化
hive简介
hive架构
hive安装部署
hvie初使用
7、hive增强和flume介绍
HQL-DDL基本语法
HQL-DML基本语法
HIVE的join
HIVE 参数配置
HIVE 自定义函数和Transform
HIVE 执行HQL的实例分析
HIVE最佳实践注意点
HIVE优化策略
HIVE实战案例
Flume介绍
Flume的安装部署
案例:采集目录到HDFS
案例:采集文件到HDFS
三、流式计算
1、Storm从入门到精通
Storm是什么
Storm架构分析
Storm架构分析
Storm编程模型、Tuple源码、并发度分析
Storm WordCount案例及常用Api分析
Storm集群部署实战
Storm+Kafka+Redis业务指标计算
Storm源码下载编译
Strom集群启动及源码分析
Storm任务提交及源码分析
Storm数据发送流程分析
Storm通信机制分析
Storm消息容错机制及源码分析
Storm多stream项目分析
编写自己的流式任务执行框架
2、Storm上下游及架构集成
消息队列是什么
Kakfa核心组件
Kafka集群部署实战及常用命令
Kafka配置文件梳理
Kakfa JavaApi学习
Kafka文件存储机制分析
Redis基础及单机环境部署
Redis数据结构及典型案例
Flume快速入门
Flume+Kafka+Storm+Redis整合
四、内存计算体系Spark
1、scala编程
scala编程介绍
scala相关软件安装
scala基础语法
scala方法和函数
scala函数式编程特点
scala数组和集合
scala编程练习(单机版WordCount)
scala面向对象
scala模式匹配
actor编程介绍
option和偏函数
实战:actor的并发WordCount
柯里化
隐式转换
2、AKKA与RPC
Akka并发编程框架
实战:RPC编程实战
3、Spark快速入门
spark介绍
spark环境搭建
RDD简介
RDD的转换和动作
实战:RDD综合练习
RDD高级算子
自定义Partitioner
实战:网站访问次数
广播变量
实战:根据IP计算归属地
自定义排序
利用JDBC RDD实现数据导入导出
WorldCount执行流程详解
4、RDD详解
RDD依赖关系
RDD缓存机制
RDD的Checkpoint检查点机制
Spark任务执行过程分析
RDD的Stage划分
5、Spark-Sql应用
Spark-SQL
Spark结合Hive
DataFrame
实战:Spark-SQL和DataFrame案例
6、SparkStreaming应用实战
Spark-Streaming简介
Spark-Streaming编程
实战:StageFulWordCount
Flume结合Spark Streaming
Kafka结合Spark Streaming
窗口函数
ELK技术栈介绍
ElasticSearch安装和使用
Storm架构分析
Storm编程模型、Tuple源码、并发度分析
Storm WordCount案例及常用Api分析
7、Spark核心源码解析
Spark源码编译
Spark远程debug
Spark任务提交行流程源码分析
Spark通信流程源码分析
SparkContext创建过程源码分析
DriverActor和ClientActor通信过程源码分析
Worker启动Executor过程源码分析
Executor向DriverActor注册过程源码分析
Executor向Driver注册过程源码分析
DAGScheduler和TaskScheduler源码分析
Shuffle过程源码分析
Task执行过程源码分析
五、机器学习算法
1、python及numpy库
机器学习简介
机器学习与python
python语言–快速入门
python语言–数据类型详解
python语言–流程控制语句
python语言–函数使用
python语言–模块和包
phthon语言–面向对象
python机器学习算法库–numpy
机器学习必备数学知识–概率论
2、常用算法实现
knn分类算法–算法原理
knn分类算法–代码实现
knn分类算法–手写字识别案例
lineage回归分类算法–算法原理
lineage回归分类算法–算法实现及demo
朴素贝叶斯分类算法–算法原理
朴素贝叶斯分类算法–算法实现
朴素贝叶斯分类算法–垃圾邮件识别应用案例
kmeans聚类算法–算法原理
kmeans聚类算法–算法实现
kmeans聚类算法–地理位置聚类应用
决策树分类算法–算法原理
决策树分类算法–算法实现
时下的大数据分析时代与人工智能热潮,相信有许多对大数据分析师非常感兴趣、跃跃欲试想着转行的朋友,但面向整个社会,最不缺的其实就是人才,对于是否转行大数据分析行列,对于能否勇敢一次跳出自己的舒适圈,不少人还是踌躇满志啊!毕竟好多决定,一旦做出了就很难再回头了。不过如果你已经转行到大数据分析领域,就不要后悔,做到如何脱颖而出才是关键。因此本文给出一些建议,针对想要转行大数据分析行列且是零基础转行的小伙伴们,希望对你们有所裨益,也希望你们将来学有所成,不后悔,更不灰心!
:
《转行大数据分析师后悔了》、《ui设计培训四个月骗局大爆料》、《零基础学大数据分析现实吗》、《大数据分析十八般工具》
当下想要成为大数据可视化工程师,想要进军这个行业的人不在少数,而且理科生会居多有点。有些想要学这门技术的文科生就很纳闷,不知道文科生怎么成为大数据可视化工程师,笔者时常收到大家类似的提问留言。电脑培训就详细讲讲,文科生怎么成为大数据可视化工程师,这个话题,解答大家心中的疑问。
1:我们都清楚的,大数据可视化是个技术岗位,那么既然是技术岗,掌握好专业技能就是首要任务。文科生想要成为合格的大数据可视化工程师,就需要熟悉MongoDB、MySQL、Redis、HBase、ElasticSearch等主流数据库;有大数据平台、数据仓库、算法挖掘、机器学习、推荐系统、大数据流处理等相关从业经验,熟悉并理解分布式系统开发。
2:除开以上技能之外,大数据工程师还需要熟悉并理解流式处理流程,掌握分布式环境开发、部署,TB级以上的实时数据流处理开发经验;有基于分布式计算技术(如Hadoop、Spark等)的数据仓库的技术架构设计、数据架构设计成功经验;深入理解Hadoop/Spark生态圈和数据应用二次开发;熟悉分类、回归、聚类等各种机器学习算法等等。
3:当你能够纯熟掌握以上技术的时候,那么找到一份大数据相关的工作是不难的哦!当然,以上技术学起来的难度也还是有的,对于本来就不是很占优势的文科生来讲,想要成为大数据可视化工程师的最好方式就是参加专业的培训。
大数据的由来
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
1
麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
大数据的应用领域
大数据无处不在,大数据应用于各个行业,包括金融、 汽车 、餐饮、电信、能源、体能和 娱乐 等在内的 社会 各行各业都已经融入了大数据的印迹。
制造业,利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
金融行业,大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
汽车 行业,利用大数据和物联网技术的无人驾驶 汽车 ,在不远的未来将走入我们的日常生活。
互联网行业,借助于大数据技术,可以分析客户行为,进行商品推荐和针对性广告投放。
电信行业,利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。
能源行业,随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
物流行业,利用大数据优化物流网络,提高物流效率,降低物流成本。
城市管理,可以利用大数据实现智能交通、环保监测、城市规划和智能安防。
体育 娱乐 ,大数据可以帮助我们训练球队,决定投拍哪种 题财的 影视作品,以及预测比赛结果。
安全领域,政府可以利用大数据技术构建起强大的国家安全保障体系,企业可以利用大数据抵御网络攻击,警察可以借助大数据来预防犯罪。
个人生活, 大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为习惯,为其提供更加周到的个性化服务。
大数据的价值,远远不止于此,大数据对各行各业的渗透,大大推动了 社会 生产和生活,未来必将产生重大而深远的影响。
大数据方面核心技术有哪些?
大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。首先给出一个通用化的大数据处理框架,主要分为下面几个方面:数据采集与预处理、数据存储、数据清洗、数据查询分析和数据可视化。
数据采集与预处理
对于各种来源的数据,包括移动互联网数据、社交网络的数据等,这些结构化和非结构化的海量数据是零散的,也就是所谓的数据孤岛,此时的这些数据并没有什么意义,数据采集就是将这些数据写入数据仓库中,把零散的数据整合在一起,对这些数据综合起来进行分析。数据采集包括文件日志的采集、数据库日志的采集、关系型数据库的接入和应用程序的接入等。在数据量比较小的时候,可以写个定时的脚本将日志写入存储系统,但随着数据量的增长,这些方法无法提供数据安全保障,并且运维困难,需要更强壮的解决方案。
Flume NG
Flume NG作为实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据,同时,对数据进行简单处理,并写到各种数据接收方(比如文本,HDFS,Hbase等)。Flume NG采用的是三层架构:Agent层,Collector层和Store层,每一层均可水平拓展。其中Agent包含Source,Channel和 Sink,source用来消费(收集)数据源到channel组件中,channel作为中间临时存储,保存所有source的组件信息,sink从channel中读取数据,读取成功之后会删除channel中的信息。
NDC
Logstash
Logstash是开源的服务器端数据处理管道,能够同时从多个来源采集数据、转换数据,然后将数据发送到您最喜欢的 “存储库” 中。一般常用的存储库是Elasticsearch。Logstash 支持各种输入选择,可以在同一时间从众多常用的数据来源捕捉事件,能够以连续的流式传输方式,轻松地从您的日志、指标、Web 应用、数据存储以及各种 AWS 服务采集数据。
Sqoop
Sqoop,用来将关系型数据库和Hadoop中的数据进行相互转移的工具,可以将一个关系型数据库(例如Mysql、Oracle)中的数据导入到Hadoop(例如HDFS、Hive、Hbase)中,也可以将Hadoop(例如HDFS、Hive、Hbase)中的数据导入到关系型数据库(例如Mysql、Oracle)中。Sqoop 启用了一个 MapReduce 作业(极其容错的分布式并行计算)来执行任务。Sqoop 的另一大优势是其传输大量结构化或半结构化数据的过程是完全自动化的。
流式计算
流式计算是行业研究的一个热点,流式计算对多个高吞吐量的数据源进行实时的清洗、聚合和分析,可以对存在于社交网站、新闻等的数据信息流进行快速的处理并反馈,目前大数据流分析工具有很多,比如开源的strom,spark streaming等。
Strom集群结构是有一个主节点(nimbus)和多个工作节点(supervisor)组成的主从结构,主节点通过配置静态指定或者在运行时动态选举,nimbus与supervisor都是Storm提供的后台守护进程,之间的通信是结合Zookeeper的状态变更通知和监控通知来处理。nimbus进程的主要职责是管理、协调和监控集群上运行的topology(包括topology的发布、任务指派、事件处理时重新指派任务等)。supervisor进程等待nimbus分配任务后生成并监控worker(jvm进程)执行任务。supervisor与worker运行在不同的jvm上,如果由supervisor启动的某个worker因为错误异常退出(或被kill掉),supervisor会尝试重新生成新的worker进程。
Zookeeper
Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。它的作用主要有配置管理、名字服务、分布式锁和集群管理。配置管理指的是在一个地方修改了配置,那么对这个地方的配置感兴趣的所有的都可以获得变更,省去了手动拷贝配置的繁琐,还很好的保证了数据的可靠和一致性,同时它可以通过名字来获取资源或者服务的地址等信息,可以监控集群中机器的变化,实现了类似于心跳机制的功能。
数据存储
Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。
HBase
HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。HBase是一种Key/Value系统,部署在hdfs上,克服了hdfs在随机读写这个方面的缺点,与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。
Phoenix
Phoenix,相当于一个Java中间件,帮助开发工程师能够像使用JDBC访问关系型数据库一样访问NoSQL数据库HBase。
Yarn
Yarn是一种Hadoop资源管理器,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。Yarn由下面的几大组件构成:一个全局的资源管理器ResourceManager、ResourceManager的每个节点代理NodeManager、表示每个应用的Application以及每一个ApplicationMaster拥有多个Container在NodeManager上运行。
Mesos
Mesos是一款开源的集群管理软件,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等应用架构。
Redis
Redis是一种速度非常快的非关系数据库,可以存储键与5种不同类型的值之间的映射,可以将存储在内存的键值对数据持久化到硬盘中,使用复制特性来扩展性能,还可以使用客户端分片来扩展写性能。
Atlas
Atlas是一个位于应用程序与MySQL之间的中间件。在后端DB看来,Atlas相当于连接它的客户端,在前端应用看来,Atlas相当于一个DB。Atlas作为服务端与应用程序通讯,它实现了MySQL的客户端和服务端协议,同时作为客户端与MySQL通讯。它对应用程序屏蔽了DB的细节,同时为了降低MySQL负担,它还维护了连接池。Atlas启动后会创建多个线程,其中一个为主线程,其余为工作线程。主线程负责监听所有的客户端连接请求,工作线程只监听主线程的命令请求。
Kudu
Kudu是围绕Hadoop生态圈建立的存储引擎,Kudu拥有和Hadoop生态圈共同的设计理念,它运行在普通的服务器上、可分布式规模化部署、并且满足工业界的高可用要求。其设计理念为fast analytics on fast data。作为一个开源的存储引擎,可以同时提供低延迟的随机读写和高效的数据分析能力。Kudu不但提供了行级的插入、更新、删除API,同时也提供了接近Parquet性能的批量扫描 *** 作。使用同一份存储,既可以进行随机读写,也可以满足数据分析的要求。Kudu的应用场景很广泛,比如可以进行实时的数据分析,用于数据可能会存在变化的时序数据应用等。
在数据存储过程中,涉及到的数据表都是成千上百列,包含各种复杂的Query,推荐使用列式存储方法,比如parquent,ORC等对数据进行压缩。Parquet 可以支持灵活的压缩选项,显著减少磁盘上的存储。
数据清洗
MapReduce作为Hadoop的查询引擎,用于大规模数据集的并行计算,”Map(映射)”和”Reduce(归约)”,是它的主要思想。它极大的方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统中。
随着业务数据量的增多,需要进行训练和清洗的数据会变得越来越复杂,这个时候就需要任务调度系统,比如oozie或者azkaban,对关键任务进行调度和监控。
Oozie
Oozie是用于Hadoop平台的一种工作流调度引擎,提供了RESTful API接口来接受用户的提交请求(提交工作流作业),当提交了workflow后,由工作流引擎负责workflow的执行以及状态的转换。用户在HDFS上部署好作业(MR作业),然后向Oozie提交Workflow,Oozie以异步方式将作业(MR作业)提交给Hadoop。这也是为什么当调用Oozie 的RESTful接口提交作业之后能立即返回一个JobId的原因,用户程序不必等待作业执行完成(因为有些大作业可能会执行很久(几个小时甚至几天))。Oozie在后台以异步方式,再将workflow对应的Action提交给hadoop执行。
Azkaban
Azkaban也是一种工作流的控制引擎,可以用来解决有多个hadoop或者spark等离线计算任务之间的依赖关系问题。azkaban主要是由三部分构成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban将大多数的状态信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、认证、调度以及对工作流执行过程中的监控等;Azkaban Executor Server用来调度工作流和任务,记录工作流或者任务的日志。
流计算任务的处理平台Sloth,是网易首个自研流计算平台,旨在解决公司内各产品日益增长的流计算需求。作为一个计算服务平台,其特点是易用、实时、可靠,为用户节省技术方面(开发、运维)的投入,帮助用户专注于解决产品本身的流计算需求
数据查询分析
Hive
Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。Hive本身不存储和计算数据,它完全依赖于HDFS和MapReduce。可以将Hive理解为一个客户端工具,将SQL *** 作转换为相应的MapReduce jobs,然后在hadoop上面运行。Hive支持标准的SQL语法,免去了用户编写MapReduce程序的过程,它的出现可以让那些精通SQL技能、但是不熟悉MapReduce 、编程能力较弱与不擅长Java语言的用户能够在HDFS大规模数据集上很方便地利用SQL 语言查询、汇总、分析数据。
Hive是为大数据批量处理而生的,Hive的出现解决了传统的关系型数据库(MySql、Oracle)在大数据处理上的瓶颈 。Hive 将执行计划分成map->shuffle->reduce->map->shuffle->reduce…的模型。如果一个Query会被编译成多轮MapReduce,则会有更多的写中间结果。由于MapReduce执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。在Hive的运行过程中,用户只需要创建表,导入数据,编写SQL分析语句即可。剩下的过程由Hive框架自动的完成。
Impala
Impala是对Hive的一个补充,可以实现高效的SQL查询。使用Impala来实现SQL on Hadoop,用来进行大数据实时查询分析。通过熟悉的传统关系型数据库的SQL风格来 *** 作大数据,同时数据也是可以存储到HDFS和HBase中的。Impala没有再使用缓慢的Hive+MapReduce批处理,而是通过使用与商用并行关系数据库中类似的分布式查询引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分组成),可以直接从HDFS或HBase中用SELECT、JOIN和统计函数查询数据,从而大大降低了延迟。Impala将整个查询分成一执行计划树,而不是一连串的MapReduce任务,相比Hive没了MapReduce启动时间。
Hive 适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询,Impala给数据人员提供了快速实验,验证想法的大数据分析工具,可以先使用Hive进行数据转换处理,之后使用Impala在Hive处理好后的数据集上进行快速的数据分析。总的来说:Impala把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的map->reduce模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。但是Impala不支持UDF,能处理的问题有一定的限制。
Spark
Spark拥有Hadoop MapReduce所具有的特点,它将Job中间输出结果保存在内存中,从而不需要读取HDFS。Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像 *** 作本地集合对象一样轻松地 *** 作分布式数据集。
Nutch
Nutch 是一个开源Java 实现的搜索引擎。它提供了我们运行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬虫。
Solr
Solr用Java编写、运行在Servlet容器(如Apache Tomcat或Jetty)的一个独立的企业级搜索应用的全文搜索服务器。它对外提供类似于Web-service的API接口,用户可以通过>
需求:
开发一个风控系统,系统包括, 规则引擎和计算引擎, 主要的内容如下:
1 规则的增删改和实时生效, 规则的分类执行
2 按照一定的纬度计算累计值,比如按照 IP, 用户 id, 账户 等纬度。
3 需要支持滑动窗口,滚动窗口,长度窗口等
遇到的问题主要有以下几点:
1 redis 做流计算太过勉强,一是根据业务上的需求,需要统计的key 至少有几亿个,最多也有几十亿个,另外redis 中需要存储少量的交易的信息。估算下来量也是非常可观
2 redis 中 hot key 特别明显,比如按照商户的纬度去统计,如果不对商户的key 进行拆封,像盒马那种流量的商户,对redis 的压力是非常大的。
我们采用的是redis 的cluster 模式,这样的话redis hot key 对redis 影响会更大。对其进行拆分是非常必要的,比如 按照小时拆分。
3 流式计算中,一个是乱序导致累加的计算不准确(有负值),另外一个是消息延迟 当时我们尝试使用flink 中的水印的概念去解决问题,发现并不适合。这个坑也是我们实践过后才发现的。
最痛苦的经历是乱序和延迟消息的解决,现在是采取纠正的方式解决。
规则引擎
规则引擎我们选用了drools,简单的探索了drools core, drools DRL, drools CEP 等,但是回头看看,针对drools的使用缺点还是很多, 而且很明显,暂时还没有替换的打算
1 使用 drools CEP 如何做分布式 我们发现drools CEP中的几种窗口都是内存计算的,应用到分布式中就没有很好的办法,几乎做不到,除非drools 也去集成redis等这种分布式缓存。
2 使用drools 觉得很笨重,因为依赖比较多,二是我们只用到了 drools 中的 if else 等判断,许多其它的功能基本就用不到,因为 1 中解决不了分布式的问题。所以从这点来说drools 已经废了,根本不用在创建kiesession 这种 重量级的东西。
3 drools中支持的运算符不是特别充分,比如像 log 运算,sum, max, avg 这种的运算等都是不支持的 DRL 语言对业务人员来说不是非常的友好。
4 另外drools 中的 连续,非连续的规则,没有看出来如何配置,至少flink cep 是有这样API的。
综上所描述,不得不吐槽下 drools真是无语,也许了解的很简单,还有别的方式,另外drools workbench 也是很无语,很复杂,估计drools 厂商想通过这种方式挣钱。
总体感觉,如果有别的选择,最好不要选用drools,分布式的问题没有解决,就等于废了,因为各种分布式窗口都需要我们自己去实现。怎么办呢
规则引擎最后还是采用了drools,根据具体的业务含义创建不同的kiesession, drools 起到了if else 判断的作用,至于滚动窗口,长度窗口和滑动窗口都通过redis来做计算。遇到头疼的问题,是
1 根据不同的统计纬度,大概计算了下,需要几十亿个key,在redis 中做计算
2 滑动窗口暂时靠 redis的zsort 的数据结构,性能不是非常好
3 热点key 的问题,特别对于大商户的热点key 的问题,需要做拆分,拆分起来是比较复杂的
4 消息延迟和消息乱序问题。
所以计算引擎的需求一般是
1 计算很快,大几百个规则,能够很快的计算出准确的结果来
2 计算准确率,当面对乱序和延迟消息的时候,如何计算的更加准确
3 计算的量的问题,正如前面提到的,几十亿个key,另外还需要存储一些信息,计算的中间状态等,如何在redis 中丢失,就会造成计算不准确。
基于以上的问题,关键是如何做的更好,优化的更好,说实话,我没有找到答案,可以做的就是不断的优化redis 计算(暂时不能上大数据,比如flink, spark 等),减少redis 的 *** 作带来的网络开销。
其实最后还要提一下,如果能采用内存计算,不用分布式计算,会不会速度更快点,比如根据业务来做分片,这样在各个实例统计的中间值就不用汇总,那么每个实例只需要内存计算就好,不需要访问redis而带来的网络开销。但是这样做也会带来架构层面的调整,比如 如何做 fault tolerance, 如何做 状态持久化, 等一系列的问题。
从使用redis结果来看,效果也不是那么差,不考虑非常热点key 的情况下,最高tps 也达到6000多(2 台机器,16core,32G 内存), 一般公司的业务其实是可以满足的,对于非常热点的key,后续的优化是继续拆分
一个好的风控系统是非常难的,做以笔记,以希望不断成长
以上就是关于大数据核心技术有哪些全部的内容,包括:大数据核心技术有哪些、应用Spark技术,SoData数据机器人实现快速、通用数据治理、发现公司里的大数据开发挣得很多,想转行,等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)