mysql 分区 与分表 区别

mysql 分区 与分表 区别,第1张

一,什么是mysql分表,分区

什么是分表,从表面意思上看呢,就是把一张表分成N多个小表,具体请看mysql分表的3种方法

什么是分区,分区呢就是把一张表的数据分成N多个区块,这些区块可以在同一个磁盘上,也可以在不同的磁盘上

一,先说一下为什么要分表

当一张的数据达到几百万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。

根据个人经验,mysql执行一个sql的过程如下:

1,接收到sql;2,把sql放到排队队列中 ;3,执行sql;4,返回执行结果。在这个执行过程中最花时间在什么地方呢?第一,是排队等待的时间,第二,sql的执行时间。其实这二个是一回事,等待的同时,肯定有sql在执行。所以我们要缩短sql的执行时间。

mysql中有一种机制是表锁定和行锁定,为什么要出现这种机制,是为了保证数据的完整性,我举个例子来说吧,如果有二个sql都要修改同一张表的同一条数据,这个时候怎么办呢,是不是二个sql都可以同时修改这条数据呢?很显然mysql对这种情况的处理是,一种是表锁定(myisam存储引擎),一个是行锁定(innodb存储引擎)。表锁定表示你们都不能对这张表进行 *** 作,必须等我对表 *** 作完才行。行锁定也一样,别的sql必须等我对这条数据 *** 作完了,才能对这条数据进行 *** 作。如果数据太多,一次执行的时间太长,等待的时间就越长,这也是我们为什么要分表的原因。

二,分表

1,做mysql集群,例如:利用mysql cluster ,mysql proxy,mysql replication,drdb等等

有人会问mysql集群,根分表有什么关系吗?虽然它不是实际意义上的分表,但是它启到了分表的作用,做集群的意义是什么呢?为一个数据库减轻负担,说白了就是减少sql排队队列中的sql的数量,举个例子:有10个sql请求,如果放在一个数据库服务器的排队队列中,他要等很长时间,如果把这10个sql请求,分配到5个数据库服务器的排队队列中,一个数据库服务器的队列中只有2个,这样等待时间是不是大大的缩短了呢?这已经很明显了。所以我把它列到了分表的范围以内,我做过一些mysql的集群:

linux mysql proxy 的安装,配置,以及读写分离

mysql replication 互为主从的安装及配置,以及数据同步

优点:扩展性好,没有多个分表后的复杂 *** 作(php代码)

缺点:单个表的数据量还是没有变,一次 *** 作所花的时间还是那么多,硬件开销大。

2,预先估计会出现大数据量并且访问频繁的表,将其分为若干个表

这种预估大差不差的,论坛里面发表帖子的表,时间长了这张表肯定很大,几十万,几百万都有可能。 聊天室里面信息表,几十个人在一起一聊一个晚上,时间长了,这张表的数据肯定很大。像这样的情况很多。所以这种能预估出来的大数据量表,我们就事先分出个N个表,这个N是多少,根据实际情况而定。以聊天信息表为例:

我事先建100个这样的表,message_00,message_01,message_02message_98,message_99然后根据用户的ID来判断这个用户的聊天信息放到哪张表里面,你可以用hash的方式来获得,可以用求余的方式来获得,方法很多,各人想各人的吧。下面用hash的方法来获得表名:

查看复制打印

<php

function get_hash_table($table,$userid) {

$str = crc32($userid);

if($str<0){

$hash = "0"substr(abs($str), 0, 1);

}else{

$hash = substr($str, 0, 2);

}

return $table"_"$hash;

}

echo get_hash_table('message','user18991'); //结果为message_10

echo get_hash_table('message','user34523'); //结果为message_13

>

说明一下,上面的这个方法,告诉我们user18991这个用户的消息都记录在message_10这张表里,user34523这个用户的消息都记录在message_13这张表里,读取的时候,只要从各自的表中读取就行了。

优点:避免一张表出现几百万条数据,缩短了一条sql的执行时间

缺点:当一种规则确定时,打破这条规则会很麻烦,上面的例子中我用的hash算法是crc32,如果我现在不想用这个算法了,改用md5后,会使同一个用户的消息被存储到不同的表中,这样数据乱套了。扩展性很差。

3,利用merge存储引擎来实现分表

我觉得这种方法比较适合,那些没有事先考虑,而已经出现了得,数据查询慢的情况。这个时候如果要把已有的大数据量表分开比较痛苦,最痛苦的事就是改代码,因为程序里面的sql语句已经写好了,现在一张表要分成几十张表,甚至上百张表,这样sql语句是不是要重写呢?举个例子,我很喜欢举子

mysql>show engines;的时候你会发现mrg_myisam其实就是merge。

查看复制打印

mysql> CREATE TABLE IF NOT EXISTS `user1` (

-> `id` int(11) NOT NULL AUTO_INCREMENT,

-> `name` varchar(50) DEFAULT NULL,

-> `sex` int(1) NOT NULL DEFAULT '0',

-> PRIMARY KEY (`id`)

-> ) ENGINE=MyISAM DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ;

Query OK, 0 rows affected (005 sec)

mysql> CREATE TABLE IF NOT EXISTS `user2` (

-> `id` int(11) NOT NULL AUTO_INCREMENT,

-> `name` varchar(50) DEFAULT NULL,

-> `sex` int(1) NOT NULL DEFAULT '0',

-> PRIMARY KEY (`id`)

-> ) ENGINE=MyISAM DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ;

Query OK, 0 rows affected (001 sec)

mysql> INSERT INTO `user1` (`name`, `sex`) VALUES('张映', 0);

Query OK, 1 row affected (000 sec)

mysql> INSERT INTO `user2` (`name`, `sex`) VALUES('tank', 1);

Query OK, 1 row affected (000 sec)

mysql> CREATE TABLE IF NOT EXISTS `alluser` (

-> `id` int(11) NOT NULL AUTO_INCREMENT,

-> `name` varchar(50) DEFAULT NULL,

-> `sex` int(1) NOT NULL DEFAULT '0',

-> INDEX(id)

-> ) TYPE=MERGE UNION=(user1,user2) INSERT_METHOD=LAST AUTO_INCREMENT=1 ;

Query OK, 0 rows affected, 1 warning (000 sec)

mysql> select id,name,sex from alluser;

+----+--------+-----+

| id | name | sex |

+----+--------+-----+

| 1 | 张映 | 0 |

| 1 | tank | 1 |

+----+--------+-----+

2 rows in set (000 sec)

mysql> INSERT INTO `alluser` (`name`, `sex`) VALUES('tank2', 0);

Query OK, 1 row affected (000 sec)

mysql> select id,name,sex from user2

-> ;

+----+-------+-----+

| id | name | sex |

+----+-------+-----+

| 1 | tank | 1 |

| 2 | tank2 | 0 |

+----+-------+-----+

2 rows in set (000 sec)

从上面的 *** 作中,我不知道你有没有发现点什么?假如我有一张用户表user,有50W条数据,现在要拆成二张表user1和user2,每张表25W条数据,

INSERT INTO user1(user1id,user1name,user1sex)SELECT (userid,username,usersex)FROM user where userid <= 250000

INSERT INTO user2(user2id,user2name,user2sex)SELECT (userid,username,usersex)FROM user where userid > 250000

这样我就成功的将一张user表,分成了二个表,这个时候有一个问题,代码中的sql语句怎么办,以前是一张表,现在变成二张表了,代码改动很大,这样给程序员带来了很大的工作量,有没有好的办法解决这一点呢?办法是把以前的user表备份一下,然后删除掉,上面的 *** 作中我建立了一个alluser表,只把这个alluser表的表名改成user就行了。但是,不是所有的mysql *** 作都能用的

a,如果你使用 alter table 来把 merge 表变为其它表类型,到底层表的映射就被丢失了。取而代之的,来自底层 myisam 表的行被复制到已更换的表中,该表随后被指定新类型。

b,网上看到一些说replace不起作用,我试了一下可以起作用的。晕一个先

mysql> UPDATE alluser SET sex=REPLACE(sex, 0, 1) where id=2;

Query OK, 1 row affected (000 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> select from alluser;

+----+--------+-----+

| id | name | sex |

+----+--------+-----+

| 1 | 张映 | 0 |

| 1 | tank | 1 |

| 2 | tank2 | 1 |

+----+--------+-----+

3 rows in set (000 sec)

c,一个 merge 表不能在整个表上维持 unique 约束。当你执行一个 insert,数据进入第一个或者最后一个 myisam 表(取决于 insert_method 选项的值)。mysql 确保唯一键值在那个 myisam 表里保持唯一,但不是跨集合里所有的表。

d,当你创建一个 merge 表之时,没有检查去确保底层表的存在以及有相同的机构。当 merge 表被使用之时,mysql 检查每个被映射的表的记录长度是否相等,但这并不十分可靠。如果你从不相似的 myisam 表创建一个 merge 表,你非常有可能撞见奇怪的问题。

优点:扩展性好,并且程序代码改动的不是很大

缺点:这种方法的效果比第二种要差一点

三,总结一下

上面提到的三种方法,我实际做过二种,第一种和第二种。第三种没有做过,所以说的细一点。哈哈。做什么事都有一个度,超过个度就过变得很差,不能一味的做数据库服务器集群,硬件是要花钱买的,也不要一味的分表,分出来1000表,mysql的存储归根到底还以文件的形势存在硬盘上面,一张表对应三个文件,1000个分表就是对应3000个文件,这样检索起来也会变的很慢。我的建议是

方法1和方法2结合的方式来进行分表

方法1和方法3结合的方式来进行分表

我的二个建议适合不同的情况,根据个人情况而定,我觉得会有很多人选择方法1和方法3结合的方式

二,mysql分表和分区有什么区别呢

1,实现方式上

a),mysql的分表是真正的分表,一张表分成很多表后,每一个小表都是完正的一张表,都对应三个文件,一个MYD数据文件,MYI索引文件,frm表结构文件。

[root@BlackGhost test]# ls |grep user

alluserMRG

alluserfrm

user1MYD

user1MYI

user1frm

user2MYD

user2MYI

user2frm

Php代码

[root@BlackGhost test]# ls |grep user

alluserMRG

alluserfrm

user1MYD

user1MYI

user1frm

user2MYD

user2MYI

user2frm

简单说明一下,上面的分表呢是利用了merge存储引擎(分表的一种),alluser是总表,下面有二个分表,user1,user2。他们二个都是独立的表,取数据的时候,我们可以通过总表来取。这里总表是没有MYD,MYI这二个文件的,也就是说,总表他不是一张表,没有数据,数据都放在分表里面。我们来看看MRG到底是什么东西

[root@BlackGhost test]# cat alluserMRG |more

user1

user2

#INSERT_METHOD=LAST

Php代码

[root@BlackGhost test]# cat alluserMRG |more

user1

user2

#INSERT_METHOD=LAST

从上面我们可以看出,alluserMRG里面就存了一些分表的关系,以及插入数据的方式。可以把总表理解成一个外壳,或者是联接池。

b),分区不一样,一张大表进行分区后,他还是一张表,不会变成二张表,但是他存放数据的区块变多了。

[root@BlackGhost test]# ls |grep aa

aa#P#p1MYD

aa#P#p1MYI

aa#P#p3MYD

aa#P#p3MYI

aafrm

aapar

Php代码

[root@BlackGhost test]# ls |grep aa

aa#P#p1MYD

aa#P#p1MYI

aa#P#p3MYD

aa#P#p3MYI

aafrm

aapar

从上面我们可以看出,aa这张表,分为二个区,p1和p3,本来是三个区,被我删了一个区。我们都知道一张表对应三个文件MYD,MYI,frm。分区呢根据一定的规则把数据文件和索引文件进行了分割,还多出了一个par文件,打开par文件后你可以看出他记录了,这张表的分区信息,根分表中的MRG有点像。分区后,还是一张,而不是多张表。

2,数据处理上

a),分表后,数据都是存放在分表里,总表只是一个外壳,存取数据发生在一个一个的分表里面。看下面的例子:

select from alluser where id=’12′表面上看,是对表alluser进行 *** 作的,其实不是的。是对alluser里面的分表进行了 *** 作。

b),分区呢,不存在分表的概念,分区只不过把存放数据的文件分成了许多小块,分区后的表呢,还是一张表。数据处理还是由自己来完成。

3,提高性能上

a),分表后,单表的并发能力提高了,磁盘I/O性能也提高了。并发能力为什么提高了呢,因为查寻一次所花的时间变短了,如果出现高并发的话,总表可以根据不同的查询,将并发压力分到不同的小表里面。磁盘I/O性能怎么搞高了呢,本来一个非常大的MYD文件现在也分摊到各个小表的MYD中去了。

b),mysql提出了分区的概念,我觉得就想突破磁盘I/O瓶颈,想提高磁盘的读写能力,来增加mysql性能。

在这一点上,分区和分表的测重点不同,分表重点是存取数据时,如何提高mysql并发能力上;而分区呢,如何突破磁盘的读写能力,从而达到提高mysql性能的目的。

4),实现的难易度上

a),分表的方法有很多,用merge来分表,是最简单的一种方式。这种方式根分区难易度差不多,并且对程序代码来说可以做到透明的。如果是用其他分表方式就比分区麻烦了。

b),分区实现是比较简单的,建立分区表,根建平常的表没什么区别,并且对开代码端来说是透明的。

三,mysql分表和分区有什么联系呢

1,都能提高mysql的性高,在高并发状态下都有一个良好的表面。

2,分表和分区不矛盾,可以相互配合的,对于那些大访问量,并且表数据比较多的表,我们可以采取分表和分区结合的方式(如果merge这种分表方式,不能和分区配合的话,可以用其他的分表试),访问量不大,但是表数据很多的表,我们可以采取分区的方式等。

一,什么是mysql分表,分区 什么是分表,从表面意思上看呢,就是把一张表分成N多个小表,具体请看mysql分表的3种方法 什么是分区,分区呢就是把一张表的数据分成N多个区块,这些区块可以在同一个磁盘上,也可以在不同的磁盘上 一,先说一下为什么要分表 当一张的数据达到几百万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。 根据个人经验,mysql执行一个sql的过程如下: 1,接收到sql;2,把sql放到排队队列中 ;3,执行sql;4,返回执行结果。在这个执行过程中最花时间在什么地方呢?第一,是排队等待的时间,第二,sql的执行时间。其实这二个是一回事,等待的同时,肯定有sql在执行。所以我们要缩短sql的执行时间。 mysql中有一种机制是表锁定和行锁定,为什么要出现这种机制,是为了保证数据的完整性,我举个例子来说吧,如果有二个sql都要修改同一张表的同一条数据,这个时候怎么办呢,是不是二个sql都可以同时修改这条数据呢?很显然mysql对这种情况的处理是,一种是表锁定(myisam存储引擎),一个是行锁定(innodb存储引擎)。表锁定表示你们都不能对这张表进行 *** 作,必须等我对表 *** 作

mysql数据库对1亿条数据的分表方法设计:

目前针对海量数据的优化有两种方法:

(1)垂直分割

优势:降低高并发情况下,对于表的锁定。

不足:对于单表来说,随着数据库的记录增多,读写压力将进一步增大。

(2)水平分割

如果单表的IO压力大,可以考虑用水平分割,其原理就是通过hash算法,将一张表分为N多页,并通过一个新的表(总表),记录着每个页的的位置。

假如一个门户网站,它的数据库表已经达到了1亿条记录,那么此时如果通过select去查询,必定会效率低下(不做索引的前提下)。为了降低单表的读写IO压力,通过水平分割,将这个表分成10个页,同时生成一个总表,记录各个页的信息,那么假如我查询一条id=100的记录,它不再需要全表扫描,而是通过总表找到该记录在哪个对应的页上,然后再去相应的页做检索,这样就降低了IO压力。

当数据库表中数据量能够被预测到将会非常大,或者已经拥有庞大的数据时,我们应该选择分表或者分区(即使用多个数据库)来解决数据访问时的性能问题。如果单机的cpu能够承受站点的并发数,应该选择分表的方式,因为分表相对简单,容易实现scale,而且涉及到多表连接时,分区是不能直接使用join的。但如果站点并发数太大,需要多个cpu来访问多个数据库是无疑的,这时需要选择分区的方式。

详细参考:>

你好!如果有大量的访问用到调取到数据库时,往往查询速度会变得很慢,所以我们需要进行优化处理。

优化从三个方面考虑:

SQL语句优化、

主从复制,读写分离,负载均衡、

数据库分库分表。

一、SQL查询语句优化

1、使用索引

建立索引可以使查询速度得到提升,我们首先应该考虑在where及orderby,groupby涉及的列上建立索引。

2、借助explain(查询优化神器)选择更好的索引和优化查询语句

SQL的Explain通过图形化或基于文本的方式详细说明了SQL语句的每个部分是如何执行以及何时执行的,以及执行效果。通过对选择更好的索引列,或者对耗时久的SQL语句进行优化达到对查询速度的优化。

3、任何地方都不要使用SELECTFROM语句。

4、不要在索引列做运算或者使用函数

5、查询尽可能使用limit来减少返回的行数

6、使用查询缓存,并将尽量多的内存分配给MYSQL做缓存

二、主从复制,读写分离,负载均衡

目前大多数的主流关系型数据库都提供了主从复制的功能,通过配置两台(或多台)数据库的主从关系,可以将一台数据库服务器的数据更新同步到另一台服务器上。网站可以利用数据库这一功能,实现数据库的读写分离,从而改善数据库的负载压力。一个系统的读 *** 作远远多于写 *** 作,因此写 *** 作发向master,读 *** 作发向slaves进行 *** 作(简单的轮询算法来决定使用哪个slave)。

利用数据库的读写分离,Web服务器在写数据的时候,访问主数据库(master),主数据库通过主从复制将数据更新同步到从数据库(slave),这样当Web服务器读数据的时候,就可以通过从数据库获得数据。这一方案使得在大量读 *** 作的Web应用可以轻松地读取数据,而主数据库也只会承受少量的写入 *** 作,还可以实现数据热备份,可谓是一举两得。

三、数据库分表、分区、分库

1、分表

通过分表可以提高表的访问效率。有两种拆分方法:

垂直拆分

在主键和一些列放在一个表中,然后把主键和另外的列放在另一个表中。如果一个表中某些列常用,而另外一些不常用,则可以采用垂直拆分。

水平拆分

根据一列或者多列数据的值把数据行放到两个独立的表中。

2、分区

分区就是把一张表的数据分成多个区块,这些区块可以在一个磁盘上,也可以在不同的磁盘上,分区后,表面上还是一张表,但是数据散列在多个位置,这样一来,多块硬盘同时处理不同的请求,从而提高磁盘I/O读写性能。实现比较简单,包括水平分区和垂直分区。

3、分库

分库是根据业务不同把相关的表切分到不同的数据库中,比如web、bbs、blog等库。

分库解决的是数据库端并发量的问题。分库和分表并不一定两个都要上,比如数据量很大,但是访问的用户很少,我们就可以只使用分表不使用分库。如果数据量只有1万,而访问用户有一千,那就只使用分库。

注意:分库分表最难解决的问题是统计,还有跨表的连接(比如这个表的订单在另外一张表),解决这个的方法就是使用中间件,比如大名鼎鼎的MyCat,用它来做路由,管理整个分库分表,乃至跨库跨表的连接

以上就是关于mysql 分区 与分表 区别全部的内容,包括:mysql 分区 与分表 区别、mysql为什么要禁止使用分区表、mysql数据库要放1亿条信息怎样分表等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10195516.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-06
下一篇 2023-05-06

发表评论

登录后才能评论

评论列表(0条)

保存