AWS推出了与SQL兼容的查询语言PartiQL,只要数据库查询引擎提供PartiQL支持,使用者就能以PartiQL单一查询关联式数据库的结构化资料,以及开放资料格式中的巢状资料或是半结构化资料,甚至还能用来查询NoSQL或是文件数据库中无固定结构(Schema-less)的资料。除了AWS自家的数据库服务,NoSQL数据库Couchbase Server也承诺将会支持PartiQL。
企业资料分散在关联式数据库、非关联式数据库以及资料湖泊中。高度结构化的资料,储存在SQL数据库或是资料仓储;无固定结构的资料则由键值储存、图形数据库(Graph Database)、分类帐数据库或是时间序列数据库等NoSQL数据库处理;而在资料湖泊中的资料,可能也有部分缺乏结构,或是可能为巢状或是多值结构。不同的资料类型适用于不同的使用案例,而每种类型的资料,可能都有自己的查询语言。
不同的资料储存对应不同的查询语言,当企业更换资料格式或是数据库引擎时,可能还需要跟着改变应用程式和查询语法,AWS提到,这对于资料的应用,特别是使用资料湖泊的灵活性与效率,有着很大的阻碍。为了统一不同类型数据库存取方法,AWS发布了查询语言PartiQL,这是个与SQL兼容的查询语言,可以用来查询以各种格式储存在各地的资料。
用户可以使用PartiQL来查询关联式数据库,像是在Redshift实作交易或是资料分析等应用,或对于Amazon S3资料湖泊的开放资料格式,同样能使用PartiQL对巢状资料与半结构化资料例如Amazon Ion格式进行查询,另外,PartiQL也可用于文件数据库等NoSQL数据库,查询无固定结构的资料。
AWS表示,PartiQL的出现,是为了满足自家查询和转换大量资料的需求,其提供严格的SQL兼容性,可与标准SQL混合使用,执行连接(Join)、过滤(Filtering)与聚合(Aggregation) *** 作,并以最小扩充支持巢状和半结构化资料,让开发者以简单且一致的方法,不需要更改查询语言,就能查询各种格式和服务的资料。
PartiQL具格式独立性与储存独立性,PartiQL语法和语义不依赖任何资料格式,无论使用者是要查询JSON、Parquet、ORC、CSV还是Ion等格式,查询语句的写法都相同,PartiQL的查询在综合逻辑类型系统上运作,才对应到不同底层的格式。而PartiQL也不相依于特定资料储存,因此适用于不同的底层资料储存。
虽然过去针对跨不同类型数据库查询的问题,已有不少解决方案,AWS指出,像是Postgres JSON同样也兼容于SQL,但是却无法良好地处理JSON巢状资料;而半结构化查询语言,虽然能良好处理巢状资料,但却无法与SQL语言兼容。AWS提到,PartiQL是第一个能够完全解决这些问题的查询语言。
目前AWS已在自家多项服务支持PartiQL,包括Amazon S3 Select、Amazon Glacier Select、Amazon Redshift Spectrum、Amazon QLDB,接下来几个月将会有更多的AWS服务支持PartiQL,Couchbase也公布将加入支持PartiQL的行列。现在PartiQL以Apache20授权许可开源,公开教学、规范以及参考实作,所有社群都能使用并参与贡献。
转化成总体目标数据库查询;
在源和总体目标数据库查询上转化成专业用以转移的数据库查询客户并受权;
针对CDC每日任务,必须参照文本文档,在源数据库查询上做相对应设定,例如打开存档,填补日志等;
转化成拷贝案例,设置网络自然环境,确保拷贝案例能够联接到源数据库查询和总体目标数据库查询;
转化成2个数据库查询的endpoint,检测拷贝案例能够联接;
假如字段名有不兼容性问题,考虑到在转移前对源数据库查询数据信息开展解决;
SCT会协助大家变换schema,但DBA手工制作干涉仍然关键。
转化成运行DMS每日任务
建立fullloadandCDCDMS每日任务;
假如信息量极大,考虑到拆分为好几个每日任务并行计算;
必需时考虑到在总体目标数据库查询删掉PK/UK/index来加快fullload每日任务;
FullLoad每日任务期内在总体目标数据库查询必须禁止使用外键约束查验并disable全部trigger以防止数据库同步出现异常;
Fullload每日任务完毕后转化成管束和index以加快CDC每日任务,但保证triggers再次处在disabled情况;
根据CDC任务完成不断变动捕捉拷贝,在源和总体目标数据库查询中间同歩数据信息,等候切换窗口
亚马逊AWS提供的云计算服务类型主要包括以下几种:
1计算服务:包括EC2、Lambda、Batch等,可以帮助用户在云端快速创建和管理虚拟机、容器等计算资源。
2存储服务:包括S3、EFS、Glacier等,可以帮助用户在云端存储和管理数据,提供高可用性、高可靠性的存储服务。
3数据库服务:包括RDS、DynamoDB、ElastiCache等,可以帮助用户在云端快速创建和管理数据库实例,提供高可用性、高可靠性的数据库服务。
4网络服务:包括VPC、CloudFront、Route 53等,可以帮助用户在云端构建和管理网络架构,提供高可用性、高可靠性的网络服务。
5安全与身份服务:包括IAM、KMS、Certificate Manager等,可以帮助用户在云端管理和保护身份和数据安全,提供高可靠性、高安全性的服务。
6分析服务:包括Athena、Kinesis、Redshift等,可以帮助用户在云端进行数据分析和处理,提供高可靠性、高性能的分析服务。
7应用程序集成服务:包括Step Functions、SWF、SNS等,可以帮助用户在云端构建和管理应用程序,提供高可靠性、高可用性的服务。
以上是亚马逊AWS提供的主要云计算服务类型,用户可以根据自己的需求选择相应的服务来构建自己的云计算架构。
很多国产数据库乘风破浪
我们正处在一个数据库技术大爆炸的时代。
这几年,NoSQL数据库、NewSQL数据库、时序数据库、图数据库、分布式数据库、超融合数据库等专业数据库技术发展势头很猛,国产数据库的表现也相当亮眼。
过去十年,是互联网发展的黄金十年。与此对应的是业务系统访问并发呈指数级上升,海量数据计算和分析需求越来越普遍,传统单机系统在业务支撑、成本、开放性等方面均面临巨大挑战,数据库垂直扩展模式难以维护等困境。
眼看着数据库性能瓶颈快要扼住发展的喉咙,摆在这些长久依赖Oracle、IBM等传统数据库的巨头们面前的,只有两条路:要么开启无限加量的PLUS模式,即更换更多更强的服务器、硬盘、内存、CPU等,要么自研能满足业务发展需求的数据库。
开拓者们的眼光一开始就聚焦在更长远的未来,他们发现即便是系统变成真正的“傻大粗”,也只是解了燃眉之急,不能从源头解决问题。
再看一眼像Oracle、IBM等传统数据库高昂的拓容价格,像阿里这样的富一代也吃不消哇!
那么,自研数据库,走起!
2010年后,云计算和开源社区兴起,国产数据库开始了弯道超车。
2019年被认为是国产数据库的元年。
这一年,众多国产数据库产品闯入了我们的视线,热度不断攀升;这一年,OceanBase登顶TPCC,并于一年后再次刷新自己的记录。
从刀耕火种到摘下Oracle在数据库领域的皇冠,国产数据库经历的是一段不被理解和不被看好的岁月。
在国外数据库先驱长期占据市场优势的情况下,国产数据库要想杀出重围,一是要付出多倍努力,二是要拿出更强的产品才能在客户面前更有底气。
当然,国产数据库发展至今,已然是百花齐放。未来,国产数据库的发展趋势相对也比较明显,即往云原生和分布式发展。
金融级分布式数据库应运而生
数字时代,数据成为各家必争之地。
在金融应用场景下,国内数据库市场于近几年开始发生变化。
随着应用层和业务层的压力加大,金融机构对分布式技术架构转型的需求应运而生。
作为软件系统的三大底层技术( *** 作系统、中间件、数据库)之一,数据库成为系统往分布式架构转型的枢纽。
不过,在早年国外传统数据库厂商盘根错节的“蚕食”下,这个核心变得又硬又难啃!
面对如今市场的需求变化,传统数据库系统呈现出一个通病:又笨重又贵。
再是,随着诸如2013年“棱镜门”事件的爆发,各界越来越重视数据安全和技术自主可控。
此外,金融机构对快速、灵活、可伸缩性、创新、敏捷等开发能力需求大大提升,出于对长期IT建设的成本考虑,自主可控更是成为他们出于自身长远发展考量的刚需。
数字化时代,金融机构的整体架构正处于往分布式、云原生、微服务等方向发展的关键时刻,数据库的选型便显得至关重要。
根据中国人民银行发布的《金融 科技 (FinTech)发展规划(2019-2021年)》,我国将有计划、分步骤地稳妥推动分布式数据库产品先行先试,形成可借鉴、能推广的典型案例和解决方案,为分布式数据库在金融领域的全面应用探明路径,确保分布式数据库在金融领域稳妥应用。
目前已有不少业界实践证明了分布式数据库应用于金融场景的可靠性。同时,金融级分布式数据库云化已经在路上。
以上就是关于AWS开源可跨关联式与NoSQL数据库的查询语言PartiQL全部的内容,包括:AWS开源可跨关联式与NoSQL数据库的查询语言PartiQL、aws上怎么查数据库、亚马逊aws提供的云计算服务类型是等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)