一、大数据及其特点
大数据目前尚无明确定义。维基百科对大数据的定义是:大数据是指所涉及的数据量规模巨大到无法通过目前主流软件工具,在合理时间内达到截取、管理、处理并整理成为帮助企业经营决策更积极目的的信息1。徐子沛在《大数据》一书中将大数据定义为:指那些大小已经超出了传统意义上的尺度,一般的软件工具难以捕捉、存储、管理和分析的数据2。《大数据时代》的作者维克·托迈尔·舍恩伯格认为,“大数据是人们在大规模数据的基础上可以做到的事情,而这些事情在小规模数据的基础上是无法完成的。大数据是人们获得新的认知、创造新的价值的源泉;大数据还是改变市场、组织机构,以及政府与公民关系的方法。”38-9《人民日报》在采访他时,他曾说:“在我看来,大数据是一种价值观、方法论,我们面临的不是随机样本,而是全体数据;不是精确性,而是混杂性;不是因果关系,而是相关关系。这是一场思维的大变革,更是一个互动的过程——你可以用不同的角度、不同的方式去做大数据,并得到不一样的结果与好处。”4据此,笔者认为:大数据是大规模数据中,可以通过有效技术手段快速获取、存储、管理并分析出可以推动社会发展的有价值的数据。
目前普遍认可大数据的四个基本特征,即4V特性:规模大(Volume)、来源广泛且类型多样(Variety)、获取及处理速度快(Velocity)、价值密度低(Value)。
数据规模大(Volume)。现代意义上的“数据”,范畴比信息还要大。进入信息时代,“数据”二字的内涵开始扩大:不仅指代“有根据的数字”,还统指一切保存在电脑中的信息,包括文本、、视频等。数据也逐渐成为“数字、文本、、视频”等的统称,也即“信息”的代名词。6256-257
数据来源广泛、类型多样(Variety)。信息时代,数据的获取途径不仅限于计算,还包括大记录,即人们通过手机、个人电脑、ipad等终端上传到网络的海量数据以及个人存储在手机、个人电脑等终端中的数据。数据的类型也不再局限于原始的计算数据、结构化数据,还包括人们在日常生活中随手记录、保存、上传至网络平台的、音频、视频等非结构化数据。
数据获取及处理速度快(Velocity)。数据来源的多样化致使数据日益公开化、社会化,数据获取更为方便、快捷、全面。伴随大数据发展而诞生的数据处理技术使得数据处理速度远远快于传统数据时代,数据处理日益规模化、软件化、智能化。
价值密度低(Value)。价值密度的高低与数据总量的大小成反比,大数据本身的价值密度是相对较低的,需要对海量的数据进行挖掘分析才能得到真正有用的信息,形成用户价值。5基于海量数据基础上形成的某一领域或某一特定内容形成的信息,相关性更强、信息更为全面,效果更佳明显,价值高于传统小数据分析得出的结论。
二、依托大数据推动社会主义核心价值观建设的重要性
大数据已经融入到大学生日常生活中,大学生学习、生活、工作无处不体现大数据。一方面,大学生通过互联网获取学习资料、娱乐资讯、工作模板,成为大数据的享用者;另一方面,大学生搜索、下载学习资料留下数据痕迹,在微博等社交网络平台发表状态、上传生活照片以及工作过程中通过网络发布通知、活动内容,成为大数据的贡献者。大数据与大学生息息相关,透过大学生可以了解学生的思想动态,亦可推动社会主义核心价值观建设。
(一)大数据为社会主义核心价值观建设提供良好的环境。
徐子沛在《数据之巅:大数据革命,历史、现实与未来》中提到一个案例:2013年7月,有报道称,华东师范大学的一位女生收到校方的短信:“同学你好,发现你上个月餐饮消费较少,不知是否有经济困难?”这条温暖的短信也要归功于数据挖掘:校方通过挖掘校园饭卡的消费数据,发现其每顿的餐费都偏低,于是发出了关心的询问,但随后发现这是一个美丽的错误——该女生其实是在减肥。6275这个案例说明可以通过大数据了解实时了解学生状态,在当前东西方价值观激烈碰撞的环境下,通过分析数据可以了解并掌握学生思想动态,做到早发现、早处理,对于为社会主义核心价值观建设提供良好的环境有极为重要的意义。
(二)大数据为社会主义核心价值观建设提供更为行之有效的方法。
价值观教育并非一成不变、形式单一,目前高校社会主义核心价值观教育方式主要有课堂教学、主题班会、高校讲座、社会实践以及网络自主获取等形式。那么,这些方式哪些是学生更喜闻乐见、接受主动性更强的方式?有没有尚未发掘的、学生潜意识中更易于接受的价值观教育方式?以课堂教学为例,学生是更倾向于教师讲课学生听的形式还是互动教学形式?如果把视频教学纳入到课堂教学中,那么视频内容是什么样的,多长的视频最优化,以何种形式展现,等等,都是值得探讨的问题。问卷调查、抽样调查等方式获取的数据量小、不够全面、不完全具有代表性,且学生填写调查问卷具有自我意识,问卷结果未必是学生真实想法。大数据是通过高校大学生在网络上发布海量资讯中获取,如学生通过QQ、微信、飞信等沟通软件,人人网、新浪微博、大学生在线等网络社交平台以及邮箱、Dropbox等数据共享平台发布的数据。数据更公开、更广泛、更全面、更真实,通过分析得出的结论更具有说服力。通过分析高校大学生思想动态大数据,可以全面、时时了解学生接受价值观教育的趋向性方式。依据不同年级、不同专业、不同高校学生特点,采用不同形式进行价值观教育,真正做到“因材施教”。
(三)大数据有效掌握高校社会主义核心价值观建设动态情况。
社会主义核心价值观建设是一项艰巨的长期工程,其过程具有动态性、延展性,需要提前、时时把握价值观建设状态、发展动态、发展趋势,随时调整价值观建设的方法、形式、重点。基于网络数据的信息挖掘,不需要逐一调查,成本低廉,更重要的是,这种分析是实时的,没有滞后性6268。
三、依托大数据推动社会主义核心价值观建设的途径
(一)树立大数据观念
大数据绝不仅仅是科研的高端产品,大数据存在于我们的日常生活中。沃尔玛通过数据挖掘发现顾客潜在意识——父亲在买尿布时往往会顺便买啤酒——捆绑“啤酒和尿布”提高销量;亚马逊通过数据挖掘——分析顾客的购买规律——“预判发货”,即在网购时,顾客还没有下单,亚马逊就将包裹寄出;奈飞公司利用客户的网上点击记录,预测其喜欢观看的内容,实现精准营销。
在高校中,数据和数据分析的价值更是随处可以得到体现,高校思想政治教育工作已经具备了大数据的特征7。建设核心价值观,充分发挥大数据的价值,需要高校学生工作者强化大数据意识,提高对数据的敏感意识、前瞻意识,培养数据共享意识、动态意识,数据不是一成不变的,要不断接受新数据、挖掘新信息。根据对数据的分析,个性化推动社会主义核心价值观建设。
(二)建立大数据库
数据是大数据时代社会主义核心价值观建设的基础。建立大数据库的方式有两种:对内,汇总校园内通过高校信息网络中心的数据及学生在各平台发布的信息;对外,搜集政府、社会发布的与核心价值观建设相关的信息。学校电子网络信息、学生交流使用的网络电子平台、校园各单位为方便服务管理而统计保存的各种信息汇总以及校园安全服务网络使用的摄像头、门禁器等产生的信息数据。
(三)培养大数据工作队伍
光有数据没有分析人才,那么数据永远只是一堆数字,没有任何价值。大数据价值密度低的特点要求数据分析者设计能完成特定任务的软件或程序,智能分析海量数据。高校社会主义核心价值观建设工作人员主要以高校学生工作处、思政教师及辅导员为主,需要在这批人员中培养一批思想政治觉悟高、政治理论水平高人员专门从事该项事务,提高他们的大数据意识和大数据处理能力,适应大数据时代社会对大学生数据能力的需求。
大数据和以前的数据相比,有4个特点(4V):Volume(大量)、Velocity(高速)、Variety(多样)、value(价值)。volume指量,数据量大,这是大数据的基础;Velocity是指处理的速度;Variety指数据的维度;value指大数据能展现的价值,这是大数据的目的。
大数据技术是指大数据的应用技术,涵盖各类大数据平台、大数据指数体系等大数据应用技术。
大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
随着云时代的来临,大数据也吸引了越来越多的关注。分析师团队认为,大数据通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。
大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。
扩展资料:
大数据的三个层面:
1、理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
2、技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
3、实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
参考资料来源:百度百科-大数据
以上就是关于大学生怎么运用大数据建设社会主义全部的内容,包括:大学生怎么运用大数据建设社会主义、大数据和数据库的区别(什么叫做大数据库)、什么是大数据技术大数据的概念等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)