redis在启动之后,从数据库加载数据。
读请求:
不要求强一致性的读请求,走redis,要求强一致性的直接从mysql读取
写请求:
数据首先都写到数据库,之后更新redis(先写redis再写mysql,如果写入失败事务回滚会造成redis中存在脏数据)
在并发不高的情况下,读 *** 作优先读取redis,不存在的话就去访问MySQL,并把读到的数据写回Redis中;写 *** 作的话,直接写MySQL,成功后再写入Redis(可以在MySQL端定义CRUD触发器,在触发CRUD *** 作后写数据到Redis,也可以在Redis端解析binlog,再做相应的 *** 作)
在并发高的情况下,读 *** 作和上面一样,写 *** 作是异步写,写入Redis后直接返回,然后定期写入MySQL
1当更新数据时,如更新某商品的库存,当前商品的库存是100,现在要更新为99,先更新数据库更改成99,然后删除缓存,发现删除缓存失败了,这意味着数据库存的是99,而缓存是100,这导致数据库和缓存不一致。
解决方法:
这种情况应该是先删除缓存,然后在更新数据库,如果删除缓存失败,那就不要更新数据库,如果说删除缓存成功,而更新数据库失败,那查询的时候只是从数据库里查了旧的数据而已,这样就能保持数据库与缓存的一致性。
2在高并发的情况下,如果当删除完缓存的时候,这时去更新数据库,但还没有更新完,另外一个请求来查询数据,发现缓存里没有,就去数据库里查,还是以上面商品库存为例,如果数据库中产品的库存是100,那么查询到的库存是100,然后插入缓存,插入完缓存后,原来那个更新数据库的线程把数据库更新为了99,导致数据库与缓存不一致的情况
解决方法:
遇到这种情况,可以用队列的去解决这个问,创建几个队列,如20个,根据商品的ID去做hash值,然后对队列个数取摸,当有数据更新请求时,先把它丢到队列里去,当更新完后在从队列里去除,如果在更新的过程中,遇到以上场景,先去缓存里看下有没有数据,如果没有,可以先去队列里看是否有相同商品ID在做更新,如果有也把查询的请求发送到队列里去,然后同步等待缓存更新完成。
这里有一个优化点,如果发现队列里有一个查询请求了,那么就不要放新的查询 *** 作进去了,用一个while(true)循环去查询缓存,循环个200MS左右,如果缓存里还没有则直接取数据库的旧数据,一般情况下是可以取到的。
1、读请求时长阻塞
由于读请求进行了非常轻度的异步化,所以一定要注意读超时的问题,每个读请求必须在超时间内返回,该解决方案最大的风险在于可能数据更新很频繁,导致队列中挤压了大量的更新 *** 作在里面,然后读请求会发生大量的超时,最后导致大量的请求直接走数据库,像遇到这种情况,一般要做好足够的压力测试,如果压力过大,需要根据实际情况添加机器。
2、请求并发量过高
这里还是要做好压力测试,多模拟真实场景,并发量在最高的时候QPS多少,扛不住就要多加机器,还有就是做好读写比例是多少
3、多服务实例部署的请求路由
可能这个服务部署了多个实例,那么必须保证说,执行数据更新 *** 作,以及执行缓存更新 *** 作的请求,都通过nginx服务器路由到相同的服务实例上
4、热点商品的路由问题,导致请求的倾斜
某些商品的读请求特别高,全部打到了相同的机器的相同丢列里了,可能造成某台服务器压力过大,因为只有在商品数据更新的时候才会清空缓存,然后才会导致读写并发,所以更新频率不是太高的话,这个问题的影响并不是很大,但是确实有可能某些服务器的负载会高一些。
img
搜索微信号(ID:芋道源码),可以获得各种 Java 源码解析。
并且,回复书籍后,可以领取笔者推荐的各种 Java 从入门到架构的书籍。
是数据库Redis是一个开源的使用ANSIC语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。从2010年3月15日起,Redis的开发工作由VMware主持。从2013年5月开始,Redis的开发由Pivotal赞助。定义
redis是一个key-value存储系统。和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sortedset--有序集合)和hash(哈希类型)。这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的 *** 作,而且这些 *** 作都是原子性的。在此基础上,redis支持各种不同方式的排序。与memcached一样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改 *** 作写入追加的记录文件,并且在此基础上实现了master-slave(主从)同步。
Redis是一个高性能的key-value数据库。redis的出现,很大程度补偿了memcached这类key/value存储的不足,在部分场合可以对关系数据库起到很好的补充作用。它提供了Java,C/C,C#,PHP,JavaScript,Perl,Object-C,Python,Ruby,Erlang等客户端,使用很方便。[1]
Redis支持主从同步。数据可以从主服务器向任意数量的从服务器上同步,从服务器可以是关联其他从服务器的主服务器。这使得Redis可执行单层树复制。存盘可以有意无意的对数据进行写 *** 作。由于完全实现了发布/订阅机制,使得从数据库在任何地方同步树时,可订阅一个频道并接收主服务器完整的消息发布记录。同步对读取 *** 作的可扩展性和数据冗余很有帮助。
redis的官网地址,非常好记,是redisio。(特意查了一下,域名后缀io属于国家域名,是britishIndianOceanterritory,即英属印度洋领地)
目前,Vmware在资助着redis项目的开发和维护。
作者redis[2]的作者,叫SalvatoreSanfilippo,来自意大利的西西里岛,现在居住在卡塔尼亚。目前供职于Pivotal公司。他使用的网名是antirez。
性能下面是官方的bench-mark数据:[1]
测试完成了50个并发执行100000个请求。
设置和获取的值是一个256字节字符串。
Linuxbox是运行Linux26,这是X3320Xeon25ghz。
文本执行使用loopback接口(127001)。
结果:读的速度是110000次/s,写的速度是81000次/s。
请采纳!
1、执行如图是命令,查看redis服务是否启动。
2、执行命令“redis-cli”进入redis命令行界面。
3、执行命令“dbsize”。
4、执行命令“flushall”刷新清除。
5、执行命令“ keys ”进行验证redis是否为空,可以看到redi数据。
大致为两种措施:
一、脚本同步:
1、自己写脚本将数据库数据写入到redis/memcached。
2、这就涉及到实时数据变更的问题(mysqlrowbinlog的实时分析),binlog增量订阅Alibaba的canal,以及缓存层数据丢失/失效后的数据同步恢复问题。
二、业务层实现:
1、先读取nosql缓存层,没有数据再读取mysql层,并写入数据到nosql。
2、nosql层做好多节点分布式(一致性hash),以及节点失效后替代方案(多层hash寻找相邻替代节点),和数据震荡恢复了。
redis实现数据库缓存的分析:
对于变化频率非常快的数据来说,如果还选择传统的静态缓存方式(Memocached、FileSystem等)展示数据,可能在缓存的存取上会有很大的开销,并不能很好的满足需要,而Redis这样基于内存的NoSQL数据库,就非常适合担任实时数据的容器。
但是往往又有数据可靠性的需求,采用MySQL作为数据存储,不会因为内存问题而引起数据丢失,同时也可以利用关系数据库的特性实现很多功能。所以就会很自然的想到是否可以采用MySQL作为数据存储引擎,Redis则作为Cache。
MySQL到Redis数据复制方案,无论MySQL还是Redis,自身都带有数据同步的机制,比较常用的MySQL的Master/Slave模式,就是由Slave端分析Master的binlog来实现的,这样的数据复制其实还是一个异步过程,只不过当服务器都在同一内网时,异步的延迟几乎可以忽略。那么理论上也可用同样方式,分析MySQL的binlog文件并将数据插入Redis。
因此这里选择了一种开发成本更加低廉的方式,借用已经比较成熟的MySQLUDF,将MySQL数据首先放入Gearman中,然后通过一个自己编写的PHPGearmanWorker,将数据同步到Redis。比分析binlog的方式增加了不少流程,但是实现成本更低,更容易 *** 作。
Redis是一个开源的内存中的数据结构存储系统,它可以用作数据库、缓存和消息中间件。
它支持多种类型的数据结构,如字符串(Strings),散列(Hashes),列表(Lists),集合(Sets),有序集合(SortedSets或者是ZSet)与范围查询,Bitmaps,和地理空间(Geospatial)索引半径查询。其中常见的数据结构类型有String、List、Set、Hash、ZSet这5种。
以上就是关于Redis 如何保持和 MySQL 数据一致全部的内容,包括:Redis 如何保持和 MySQL 数据一致、redis不是数据库吗(redis是关系数据库吗)、如何在linux中查询redis的数据等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)