数据库三级模式用户模式

数据库三级模式用户模式,第1张

1模式

模式又称概念模式或逻辑模式,对应于概念级。它是由数据库设计者综合所有用户的数据,按照统一的观点构造的全局逻辑结构,是对数据库中全部数据的逻辑结构和特征的总体描述,是所有用户的公共数据视图(全局视图)。它是由数据库管理系统提供的数据模式描述语言(data

description

language,ddl)来描述、定义的,体现、反映了数据库系统的整体观。

2.外模式

外模式又称子模式,对应于用户级。它是某个或某几个用户所看到的数据库的数据视图,是与某一应用有关的数据的逻辑表示。外模式是从模式导出的一个子集,包含模式中允许特定用户使用的那部分数据。用户可以通过外模式描述语言来描述、定义对应于用户的数据记录(外模式),也可以利用数据 *** 纵语言(data

manipulation

lang

uage,dml)对这些数据记录进行。外模式反映了数据库的用户观。

3.内模式

内模式又称存储模式,对应于物理级,它是数据库中全体数据的内部表示或底层描述,是数据库最低一级的逻辑描述,它描述了数据在存储介质上的存储方式翱物理结构,对应着实际存储在外存储介质上的数据库。内模式由内模式描述语言来描述、定义,它是数据库的存储观。

在一个数据库系统中,只有唯一的数据库,

因而作为定义

、描述数据库存储结构的内模式和定义、描述数据库逻辑结构的模式,也是惟一的,但建立在数据库系统之上的应用则是非常广泛、多样的,所以对应的外模式不是惟一的,也不可能是惟一的。

三级模式,两级映射,方便修改维护。

用户应用程序根据外模式进行数据 *** 作,通过外模式一模式映射,定义和建立某个外模式与模式间的对应关系,将外模式与模式联系起来,当模式发生改变时,只要改变其映射,就可以使外模式保持不变,对应的应用程序也可保持不变;另一方面,通过模式一内模式映射,定义建立数据的逻辑结构(模式)与存储结构(内模式)间的对应关系,当数据的存储结构发生变化时,只需改变模式一内模式映射,就能保持模式不变,因此应用程序也可以保持不变。

一、定义不同

Simple简单恢复模式,Simple模式的旧称叫”Checkpoint with truncate log“。Full完整恢复模式,和Simple模式相反,Full模式的旧称叫”Checkpoint without truncate log“。Bulk-logged 大容量日志恢复。

二、功能不同

完整sql server恢复模式:

数据库引擎把所有 *** 作都记录到事务日志上,并且数据库引擎绝对不会截断日志,完整恢复模式能使数据库恢复到故障时间点。

简单sql server恢复模式:

数据库引擎最低限度地记录大多数 *** 作,并在每个检查点之后截断事务日志。它不能备份或还原事务日志,也不能还原单独的数据页。

大容量日志模式:

数据库引擎对大容量 *** 作(select into和bulk insert)进行最小记录。如果一个日志备份包含任何大容量 *** 作,就可以使数据库恢复到日志备份的结尾,但不能恢复到某个时间点,它仅用于大容量 *** 作期间。

三、好处不同

在Simple模式下,SQL Server会在每次checkpoint或backup之后自动截断log,也就是丢弃所有的inactive log records,仅保留用于实例启动时自动发生的instance recovery所需的少量log,这样做的好处是log文件非常小,不需要DBA去维护。

Full模式SQL Server不主动截断log,只有备份log之后,才可以截断log,否则log文件会一直增大,直到撑爆硬盘,因此需要部署一个job定时备份log。Full的好处是可以做point-in-time恢复,最大限度的保证数据不丢失,一般用于critical的业务环境里。

Bulk-logged是针对以下Bulk *** 作,会产生尽量少的log:

1、Bulk load operations (bcp and BULK INSERT)

2、SELECT INTO

3、Create/drop/rebuild index 通常bulk *** 作会产生大量的log,对SQL Server的性能有较大影响,bulk-logged模式的作用就在于降低这种性能影响,并防止log文件过分增长。

1、第一范式(1NF)

所谓第一范式(1NF)是指在关系模型中,对于添加的一个规范要求,所有的域都应该是原子性的,即数据库表的每一列都是不可分割的原子数据项,而不能是集合,数组,记录等非原子数据项。

即实体中的某个属性有多个值时,必须拆分为不同的属性。在符合第一范式(1NF)表中的每个域值只能是实体的一个属性或一个属性的一部分。简而言之,第一范式就是无重复的域。

说明:在任何一个关系数据库中,第一范式(1NF)是对关系模式的设计基本要求,一般设计中都必须满足第一范式(1NF)。

不过有些关系模型中突破了1NF的限制,这种称为非1NF的关系模型。换句话说,是否必须满足1NF的最低要求,主要依赖于所使用的关系模型。

2、第二范式(2NF)

在1NF的基础上,非码属性必须完全依赖于候选码(在1NF基础上消除非主属性对主码的部分函数依赖)

第二范式(2NF)是在第一范式(1NF)的基础上建立起来的,即满足第二范式(2NF)必须先满足第一范式(1NF)。

第二范式(2NF)要求数据库表中的每个实例或记录必须可以被唯一地区分。选取一个能区分每个实体的属性或属性组,作为实体的唯一标识。

例如在员工表中的身份z号码即可实现每个一员工的区分,该身份z号码即为候选键,任何一个候选键都可以被选作主键。

在找不到候选键时,可额外增加属性以实现区分,如果在员工关系中,没有对其身份z号进行存储,而姓名可能会在数据库运行的某个时间重复。

无法区分出实体时,设计辟如ID等不重复的编号以实现区分,被添加的编号或ID选作主键。(该主键的添加是在ER设计时添加,不是建库时随意添加)

第二范式(2NF)要求实体的属性完全依赖于主关键字。

所谓完全依赖是指不能存在仅依赖主关键字一部分的属性,如果存在,那么这个属性和主关键字的这一部分应该分离出来形成一个新的实体,新实体与原实体之间是一对多的关系。

为实现区分通常需要为表加上一个列,以存储各个实例的唯一标识。简而言之,第二范式就是在第一范式的基础上属性完全依赖于主键。

3、第三范式(3NF)

在2NF基础上,任何非主属性不依赖于其它非主属性(在2NF基础上消除传递依赖)

第三范式(3NF)是第二范式(2NF)的一个子集,即满足第三范式(3NF)必须满足第二范式(2NF)。

简而言之,第三范式(3NF)要求一个关系中不包含已在其它关系已包含的非主关键字信息。例如,存在一个部门信息表,其中每个部门有部门编号(dept_id)、部门名称、部门简介等信息。

那么在员工信息表中列出部门编号后就不能再将部门名称、部门简介等与部门有关的信息再加入员工信息表中。

如果不存在部门信息表,则根据第三范式(3NF)也应该构建它,否则就会有大量的数据冗余。

简而言之,第三范式就是属性不依赖于其它非主属性,也就是在满足2NF的基础上,任何非主属性不得传递依赖于主属性。

扩展资料

设计关系数据库时,遵从不同的规范要求,设计出合理的关系型数据库,这些不同的规范要求被称为不同的范式,各种范式呈递次规范,越高的范式数据库冗余越小。

目前关系数据库有六种范式:第一范式(1NF)、第二范式(2NF)、第三范式(3NF)、巴斯-科德范式(BCNF)、第四范式(4NF)和第五范式(5NF,又称完美范式)。

满足最低要求的范式是第一范式(1NF)。在第一范式的基础上进一步满足更多规范要求的称为第二范式(2NF),其余范式以次类推。一般说来,数据库只需满足第三范式(3NF)就行了。

数据库范式1NF 2NF 3NF BCNF(实例)

设计范式(范式,数据库设计范式,数据库的设计范式)是符合某一种级别的关系模式的集合。构造数据库必须遵循一定的规则。在关系数据库中,这种规则就是范式。关系数据库中的关系必须满足一定的要求,即满足不同的范式。目前关系数据库有六种范式:第一范式(1NF)、第二范式(2NF)、第三范式(3NF)、第四范式(4NF)、第五范式(5NF)和第六范式(6NF)。满足最低要求的范式是第一范式(1NF)。在第一范式的基础上进一步满足更多要求的称为第二范式(2NF),其余范式以次类推。一般说来,数据库只需满足第三范式(3NF)就行了。下面我们举例介绍第一范式(1NF)、第二范式(2NF)和第三范式(3NF)。

在创建一个数据库的过程中,范化是将其转化为一些表的过程,这种方法可以使从数据库得到的结果更加明确。这样可能使数据库产生重复数据,从而导致创建多余的表。范化是在识别数据库中的数据元素、关系,以及定义所需的表和各表中的项目这些初始工作之后的一个细化的过程。

下面是范化的一个例子 Customer Item purchased Purchase price Thomas Shirt $40 Maria Tennis shoes $35 Evelyn Shirt $40 Pajaro Trousers $25

如果上面这个表用于保存物品的价格,而你想要删除其中的一个顾客,这时你就必须同时删除一个价格。范化就是要解决这个问题,你可以将这个表化为两个表,一个用于存储每个顾客和他所买物品的信息,另一个用于存储每件产品和其价格的信息,这样对其中一个表做添加或删除 *** 作就不会影响另一个表。

关系数据库的几种设计范式介绍

1 第一范式(1NF)

在任何一个关系数据库中,第一范式(1NF)是对关系模式的基本要求,不满足第一范式(1NF)的数据库就不是关系数据库。

所谓第一范式(1NF)是指数据库表的每一列都是不可分割的基本数据项,同一列中不能有多个值,即实体中的某个属性不能有多个值或者不能有重复的属性。如果出现重复的属性,就可能需要定义一个新的实体,新的实体由重复的属性构成,新实体与原实体之间为一对多关系。在第一范式(1NF)中表的每一行只包含一个实例的信息。例如,对于图3-2 中的员工信息表,不能将员工信息都放在一列中显示,也不能将其中的两列或多列在一列中显示;员工信息表的每一行只表示一个员工的信息,一个员工的信息在表中只出现一次。简而言之,第一范式就是无重复的列。

2 第二范式(2NF)

第二范式(2NF)是在第一范式(1NF)的基础上建立起来的,即满足第二范式(2NF)必须先满足第一范式(1NF)。第二范式(2NF)要求数据库表中的每个实例或行必须可以被惟一地区分。为实现区分通常需要为表加上一个列,以存储各个实例的惟一标识。如图3-2 员工信息表中加上了员工编号(emp_id)列,因为每个员工的员工编号是惟一的,因此每个员工可以被惟一区分。这个惟一属性列被称为主关键字或主键、主码。

第二范式(2NF)要求实体的属性完全依赖于主关键字。所谓完全依赖是指不能存在仅依赖主关键字一部分的属性,如果存在,那么这个属性和主关键字的这一部分应该分离出来形成一个新的实体,新实体与原实体之间是一对多的关系。为实现区分通常需要为表加上一个列,以存储各个实例的惟一标识。简而言之,第二范式就是非主属性非部分依赖于主关键字。

3 第三范式(3NF)

满足第三范式(3NF)必须先满足第二范式(2NF)。简而言之,第三范式(3NF)要求一个数据库表中不包含已在其它表中已包含的非主关键字信息。例如,存在一个部门信息表,其中每个部门有部门编号(dept_id)、部门名称、部门简介等信息。那么在图3-2的员工信息表中列出部门编号后就不能再将部门名称、部门简介等与部门有关的信息再加入员工信息表中。如果不存在部门信息表,则根据第三范式(3NF)也应该构建它,否则就会有大量的数据冗余。简而言之,第三范式就是属性不依赖于其它非主属性。

数据库设计三大范式应用实例剖析

数据库的设计范式是数据库设计所需要满足的规范,满足这些规范的数据库是简洁的、结构明晰的,同时,不会发生插入(insert)、删除(delete)和更新(update) *** 作异常。反之则是乱七八糟,不仅给数据库的编程人员制造麻烦,而且面目可憎,可能存储了大量不需要的冗余信息。

设计范式是不是很难懂呢?非也,大学教材上给我们一堆数学公式我们当然看不懂,也记不住。所以我们很多人就根本不按照范式来设计数据库。

实质上,设计范式用很形象、很简洁的话语就能说清楚,道明白。本文将对范式进行通俗地说明,并以笔者曾经设计的一个简单论坛的数据库为例来讲解怎样将这些范式应用于实际工程。

范式说明

第一范式(1NF):数据库表中的字段都是单一属性的,不可再分。这个单一属性由基本类型构成,包括整型、实数、字符型、逻辑型、日期型等。

例如,如下的数据库表是符合第一范式的:

字段1 字段2 字段3 字段4

而这样的数据库表是不符合第一范式的:

字段1 字段2 字段3 字段4

字段31 字段32

很显然,在当前的任何关系数据库管理系统(DBMS)中,傻瓜也不可能做出不符合第一范式的数据库,因为这些DBMS不允许你把数据库表的一列再分成二列或多列。因此,你想在现有的DBMS中设计出不符合第一范式的数据库都是不可能的。

第二范式(2NF):数据库表中不存在非关键字段对任一候选关键字段的部分函数依赖(部分函数依赖指的是存在组合关键字中的某些字段决定非关键字段的情况),也即所有非关键字段都完全依赖于任意一组候选关键字。

假定选课关系表为SelectCourse(学号, 姓名, 年龄, 课程名称, 成绩, 学分),关键字为组合关键字(学号, 课程名称),因为存在如下决定关系:

(学号, 课程名称) → (姓名, 年龄, 成绩, 学分)

这个数据库表不满足第二范式,因为存在如下决定关系:

(课程名称) → (学分)

(学号) → (姓名, 年龄)

即存在组合关键字中的字段决定非关键字的情况。

由于不符合2NF,这个选课关系表会存在如下问题:

(1) 数据冗余:

同一门课程由n个学生选修,"学分"就重复n-1次;同一个学生选修了m门课程,姓名和年龄就重复了m-1次。

(2) 更新异常:

若调整了某门课程的学分,数据表中所有行的"学分"值都要更新,否则会出现同一门课程学分不同的情况。

(3) 插入异常:

假设要开设一门新的课程,暂时还没有人选修。这样,由于还没有"学号"关键字,课程名称和学分也无法记录入数据库。

(4) 删除异常:

假设一批学生已经完成课程的选修,这些选修记录就应该从数据库表中删除。但是,与此同时,课程名称和学分信息也被删除了。很显然,这也会导致插入异常。

把选课关系表SelectCourse改为如下三个表:

学生:Student(学号, 姓名, 年龄);

课程:Course(课程名称, 学分);

选课关系:SelectCourse(学号, 课程名称, 成绩)。

这样的数据库表是符合第二范式的, 消除了数据冗余、更新异常、插入异常和删除异常。

另外,所有单关键字的数据库表都符合第二范式,因为不可能存在组合关键字。

第三范式(3NF):在第二范式的基础上,数据表中如果不存在非关键字段对任一候选关键字段的传递函数依赖则符合第三范式。所谓传递函数依赖,指的是如果存在"A → B → C"的决定关系,则C传递函数依赖于A。因此,满足第三范式的数据库表应该不存在如下依赖关系:

关键字段 → 非关键字段x → 非关键字段y

假定学生关系表为Student(学号, 姓名, 年龄, 所在学院, 学院地点, 学院电话),关键字为单一关键字"学号",因为存在如下决定关系:

(学号) → (姓名, 年龄, 所在学院, 学院地点, 学院电话)

这个数据库是符合2NF的,但是不符合3NF,因为存在如下决定关系:

(学号) → (所在学院) → (学院地点, 学院电话)

即存在非关键字段"学院地点"、"学院电话"对关键字段"学号"的传递函数依赖。

它也会存在数据冗余、更新异常、插入异常和删除异常的情况,读者可自行分析得知。

把学生关系表分为如下两个表:

学生:(学号, 姓名, 年龄, 所在学院);

学院:(学院, 地点, 电话)。

这样的数据库表是符合第三范式的,消除了数据冗余、更新异常、插入异常和删除异常。

鲍依斯-科得范式(BCNF):在第三范式的基础上,数据库表中如果不存在任何字段对任一候选关键字段的传递函数依赖则符合第三范式。

假设仓库管理关系表为StorehouseManage(仓库ID, 存储物品ID, 管理员ID, 数量),且有一个管理员只在一个仓库工作;一个仓库可以存储多种物品。这个数据库表中存在如下决定关系:

(仓库ID, 存储物品ID) →(管理员ID, 数量)

(管理员ID, 存储物品ID) → (仓库ID, 数量)

所以,(仓库ID, 存储物品ID)和(管理员ID, 存储物品ID)都是StorehouseManage的候选关键字,表中的唯一非关键字段为数量,它是符合第三范式的。但是,由于存在如下决定关系:

(仓库ID) → (管理员ID)

(管理员ID) → (仓库ID)

即存在关键字段决定关键字段的情况,所以其不符合BCNF范式。它会出现如下异常情况:

(1) 删除异常:

当仓库被清空后,所有"存储物品ID"和"数量"信息被删除的同时,"仓库ID"和"管理员ID"信息也被删除了。

(2) 插入异常:

当仓库没有存储任何物品时,无法给仓库分配管理员。

(3) 更新异常:

如果仓库换了管理员,则表中所有行的管理员ID都要修改。

把仓库管理关系表分解为二个关系表:

仓库管理:StorehouseManage(仓库ID, 管理员ID);

仓库:Storehouse(仓库ID, 存储物品ID, 数量)。

这样的数据库表是符合BCNF范式的,消除了删除异常、插入异常和更新异常。

范式应用

我们来逐步搞定一个论坛的数据库,有如下信息:

(1) 用户:用户名,email,主页,电话,联系地址

(2) 帖子:发帖标题,发帖内容,回复标题,回复内容

第一次我们将数据库设计为仅仅存在表:

用户名 email 主页 电话 联系地址 发帖标题 发帖内容 回复标题 回复内容

这个数据库表符合第一范式,但是没有任何一组候选关键字能决定数据库表的整行,唯一的关键字段用户名也不能完全决定整个元组。我们需要增加"发帖ID"、"回复ID"字段,即将表修改为:

用户名 email 主页 电话 联系地址 发帖ID 发帖标题 发帖内容 回复ID 回复标题 回复内容

这样数据表中的关键字(用户名,发帖ID,回复ID)能决定整行:

(用户名,发帖ID,回复ID) → (email,主页,电话,联系地址,发帖标题,发帖内容,回复标题,回复内容)

但是,这样的设计不符合第二范式,因为存在如下决定关系:

(用户名) → (email,主页,电话,联系地址)

(发帖ID) → (发帖标题,发帖内容)

(回复ID) → (回复标题,回复内容)

即非关键字段部分函数依赖于候选关键字段,很明显,这个设计会导致大量的数据冗余和 *** 作异常。

我们将数据库表分解为(带下划线的为关键字):

(1) 用户信息:用户名,email,主页,电话,联系地址

(2) 帖子信息:发帖ID,标题,内容

(3) 回复信息:回复ID,标题,内容

(4) 发贴:用户名,发帖ID

(5) 回复:发帖ID,回复ID

这样的设计是满足第1、2、3范式和BCNF范式要求的,但是这样的设计是不是最好的呢?

不一定。

观察可知,第4项"发帖"中的"用户名"和"发帖ID"之间是1:N的关系,因此我们可以把"发帖"合并到第2项的"帖子信息"中;第5项"回复"中的"发帖ID"和"回复ID"之间也是1:N的关系,因此我们可以把"回复"合并到第3项的"回复信息"中。这样可以一定量地减少数据冗余,新的设计为:

(1) 用户信息:用户名,email,主页,电话,联系地址

(2) 帖子信息:用户名,发帖ID,标题,内容

(3) 回复信息:发帖ID,回复ID,标题,内容

数据库表1显然满足所有范式的要求;

数据库表2中存在非关键字段"标题"、"内容"对关键字段"发帖ID"的部分函数依赖,即不满足第二范式的要求,但是这一设计并不会导致数据冗余和 *** 作异常;

数据库表3中也存在非关键字段"标题"、"内容"对关键字段"回复ID"的部分函数依赖,也不满足第二范式的要求,但是与数据库表2相似,这一设计也不会导致数据冗余和 *** 作异常。

由此可以看出,并不一定要强行满足范式的要求,对于1:N关系,当1的一边合并到N的那边后,N的那边就不再满足第二范式了,但是这种设计反而比较好!

对于M:N的关系,不能将M一边或N一边合并到另一边去,这样会导致不符合范式要求,同时导致 *** 作异常和数据冗余。

对于1:1的关系,我们可以将左边的1或者右边的1合并到另一边去,设计导致不符合范式要求,但是并不会导致 *** 作异常和数据冗余。

结论

满足范式要求的数据库设计是结构清晰的,同时可避免数据冗余和 *** 作异常。这并意味着不符合范式要求的设计一定是错误的,在数据库表中存在1:1或1:N关系这种较特殊的情况下,合并导致的不符合范式要求反而是合理的。

在我们设计数据库的时候,一定要时刻考虑范式的要求。

__________________________________________________________________

应该是第二种说法,只听说过1NF,2NF,3NF这么分的,我大学教科书上也这么写的

数据库的三级模式结构包括:外模式、概念模式、内模式。

用户级对应外模式,概念级对应概念模式,物理级对应内模式,使不同级别的用户对数据库形成不同的视图。所谓视图,就是指观察、认识和理解数据的范围、角度和方法,是数据库在用户“眼中"的反映,很显然,不同层次(级别)用户所“看到”的数据库是不相同的。

扩展资料:

从数据库管理库管理系统的角度看,数据库系统体系结构一般采用三级模式结构。实际上,数据库的产品很多,它们支持不同的数据模式,使用不同的数据库语言,建立在不同的 *** 作系统上。数据的存储结构也各不相同,但体系结构基本上都具有相同的特征,采用“三级模式和两级映像”。

数据库系统采用三级模式结构,这是数据库管理系统内部的系统结构。数据库系统设计员可在视图层、逻辑层和物理层对数据抽象,通过外模式、概念模式和内模式来描述不同层次上的数据特性。

总之,数据按外模式的描述提供给用户;按内模式的描述存储在磁盘上;而概念模式提供了连接这两级模式的相对稳定的中间层,并使得两级中任意一级的改变都不受另一级的牵制。

参考资料来源:百度百科-数据库三级模式

以上就是关于数据库三级模式用户模式全部的内容,包括:数据库三级模式用户模式、数据库为什么要采用三级模式结构、SQL三种恢复模式有什么区别等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10203128.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-06
下一篇 2023-05-06

发表评论

登录后才能评论

评论列表(0条)

保存