什么叫数据切平处理方法

什么叫数据切平处理方法,第1张

数据切平处理方法是指通过某种特定的条件,将存放在同一个数据库中的数据分散存放到多个数据库(主机)上,以达到分散单台设备负载的效果。数据的切分(Sharding)根据其切分规则的类型,可以分为两种切分模式。一种是按照不同的表(或者Schema)来切分到不同的数据库(主机)之上,这种切可以称之为数据的垂直(纵向)切分。另外一种则是根据表中的数据的逻辑关系,将同一个表中的数据按照某种条件拆分到多台数据库(主机)上面,这种切分称之为数据的水平(横向)切分。

将所有数据都迁移到mycat中,一共有4个数据库,blog01,blog02,blog_article01,blog_article02。

article,article_tags分别在blog_article01,blog_article02,按照uid进行水平拆分。

user_info表在blog01,link,category,tag在blog02数据库中。

可以。

数据的切分(Sharding)根据其切分规则的类型,可以分为两种切分模式。一种是按照不同的表(或Schema)来切分到不同的数据库(主机)之上,这种切可以称之为数据的垂直(纵向)切分,另外一种则是根据表中的数据的逻辑关系,将同一个表中的数据按照某种条件拆分到多台数据库(主机)上面,这种切分称之为数据的水平(横向)切分。垂直切分一个数据库由很多表的构成,每个表对应着不同的业务,垂直切分是指按照业务将表进行分类,分布到不同的数据库上面,这样也就将数据或者说压力分担到不同的库上面, 垂直切分的优缺点介绍:

优点:拆分后业务清晰,拆分规则明确。系统之间整合或扩展容易。数据维护简单。

缺点:部分业务表无法join,只能通过接口方式解决,提高了系统复杂度。受每种业务不同的限制存在单库性能瓶颈,不易数据扩展跟性能提高。事务处理复杂。由于垂直切分是按照业务的分类将表分散到不同的库,所以有些业务表会过于庞大,存在单库读写与存储瓶颈,所以就需要水平拆分来做解决。水平切分相对于垂直拆分,水平拆分不是将表做分类,而是按照某个字段的某种规则来分散到多个库之中,每个表中包含一部分数据。简单来说,我们可以将数据的水平切分理解为是按照数据行的切分,就是将表中的某些行切分到一个数据库,而另外的某些行又切分到其他的数据库中,水平切分的优缺点介绍:拆分规则抽象好,join *** 作基本可以数据库做。

不存在单库大数据,高并发的性能瓶颈。应用端改造较少。提高了系统的稳定性跟负载能力。拆分规则难以抽象。分片事务一致性难以解决。数据多次扩展难度跟维护量极大。跨库join性能较差。垂直切分和水平切分共同的特点和缺点有:引入分布式事务的问题。跨节点Join的问题。跨节点合并排序分页问题。多数据源管理问题。

以上就是关于什么叫数据切平处理方法全部的内容,包括:什么叫数据切平处理方法、mysql里的大表用mycat做水平拆分,是不是要先手动分好,再配置mycat、整个数据库的dmp文件能拆分出表吗等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10634157.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-10
下一篇 2023-05-10

发表评论

登录后才能评论

评论列表(0条)

保存