Seurat 指导聚类教程
参照官网教程 用了自己的一批真实的数据,总共有7038个细胞。以下是cellranger count跑出来的标准结果。
我们从读取数据开始。Read10X函数从10X读取cellranger流程的输出,返回UMI计数矩阵。矩阵中的值表示每个特征(即基因;在每个细胞(列)中检测到的。
接下来,我们使用count矩阵创建一个Seurat对象。该对象充当一个容器,其中包含单细胞数据集的数据(如计数矩阵)和分析(如PCA或聚类结果)。
读取数据:
datadir 参数包含矩阵的目录。包含matrixmtx,genetsv(或featurestsv)和barcodestsv。为了加载多个数据目录,可以给出一个向量或命名向量。如果给定了命名向量,则cell barcode 名称将以该名称为前缀。
genecolumn 参数指定基因在哪一列。featurestsv或genetsv用于基因名称的tsv;默认是2,表示第二列是基因名,我们来看一下featurestsv,包含3列:
uniquefeatures 参数默认为TRUE,表示 使features name unique。
如果featurescsv表明数据具有多个数据类型,则返回一个包含每种类型数据的稀疏矩阵的列表。否则将返回一个包含表达式数据的稀疏矩阵。
使用原始数据(非规范化数据)初始化Seurat对象。
注意:在以前的版本(<30)中,该函数还接受一个参数来设置“检测到的”特征(基因)的表达阈值。为了简化初始化过程/假设,删除了此功能。如果您仍然希望为特定的数据集设置这个阈值,那么只需在调用此函数之前对输入表达式矩阵进行筛选即可。
可以发现7038samples 和网页版报告一致,33538 features也和featurescsv数量一致。
count matrix 数据长什么?
例如,计数矩阵存储在G48E2L1[["RNA"]]@counts中。
只看几个基因:
点 矩阵中的值表示0(未检测到分子)。由于scRNA-seq矩阵中的大多数值都是0,所以Seurat尽可能使用 稀疏矩阵表 示。这为Drop-seq/inDrop/10x数据节省了大量内存和速度。
如果需要查看稀疏矩阵的空间大小(个人理解),这些可以忽略。
以下步骤包含Seurat中scRNA-seq数据的标准预处理工作流。这些代表细胞的选择和过滤基于QC指标,数据归一化和缩放,并检测高度可变的特征。
QC和选择细胞进行进一步分析
Seurat允许您轻松地探索QC指标,并根据任何用户定义的标准过滤单元格。大家通常使用的一些QC指标包括
QC指标存储在哪里?
在官方的样例中,可视化QC指标,并进行cell过滤。
先来可视化看一下:
VlnPlot()是Seurat中用于绘制单细胞数据的小提琴图函数(基因表达、指标、PC分数等),小提琴图用于显示数据分布及其概率密度。
FeatureScatter通常用于可视化 feature-feature 关系,也可以用于计算对象的任何东西,ie 对象数据中的列,PC分数等。 个人理解:就是用点图看两个数据之间的相关性。
官方教程中在这里过滤掉 2500 > nFeature_RNA >200 和percentmt < 5的数据:
但是我不想过滤,本文数据没有做过滤处理。哈哈哈!
从数据集中删除不需要的细胞后,下一步是数据标准化。默认情况下,我们使用全局缩放归一化方法“LogNormalize”,它将每个细胞的特征表达式测量值归一化为总的表达式,再乘以一个缩放因子(默认为10,000),对结果对数化处理。标准化的数值存储在pbmc[["RNA"]]@data中。
接下来,我们将计算数据集中显示高细胞间差异的特征子集(i。e,它们在一些细胞中高表达,在另一些细胞中低表达)。我们和其他人发现,在下游分析中关注这些基因有助于在单细胞数据集中突出生物信号。
这里详细描述了Seurat3中的过程,并通过直接建模单细胞数据中固有的均值-方差关系改进了先前的版本,并在FindVariableFeatures函数中实现。默认情况下,我们为每个数据集返回2,000个特性。这些将用于下游分析,如PCA。
Find variable features
识别“平均变异性图”上的异常点。
FindVariableFeatures(object, )
如何选择selectionmethod:
vst: 首先,用局部多项式回归(loess)拟合对数(方差)与对数(均值)的关系。然后使用观察到的平均值和期望的方差(由拟合线给出)对特征值进行标准化。然后,在裁剪到最大值之后,根据标准化的值计算特征方差(参见clip)。max参数)。
meanvarplot (mvp): 首先,使用一个函数计算每个特征的平均表达式(meanfunction)和离散度(diffusion function)。接下来,根据每个bin的平均表达式将特征划分为number bin (默认 20),并计算每个bin内的离散度z-score。这样做的目的是识别变量特征,同时控制可变性和平均表达之间的强烈关系。
dispersion(disp): 选择分散值最高的基因
找出10个差异最大的基因:
接下来,我们应用一个线性变换(“scaling”),这是一个标准的预处理步骤,比PCA等降维技术更重要。
ScaleData函数功能:
接下来,我们对缩放的数据执行PCA。默认情况下,只使用前面确定的变量特性作为输入,但是如果您希望选择不同的子集,可以使用features参数来定义。
Seurat提供了几种有用的方法来可视化细胞和定义PCA的特性,包括VizDimReduction、DimPlot和DimHeatmap
检查和可视化PCA结果的几种不同的方法
特别是,DimHeatmap可以方便地探索数据集中主要的异构来源,并且在决定哪些PCs可以用于进一步的下游分析时非常有用。细胞和特征都是根据它们的PCA分数排序的。将cells设置为一个数字,可以绘制光谱两端的“极端”细胞,这极大地加快了绘制大型数据集的速度。虽然这显然是一个监督分析,但我们发现这是一个有价值的工具,用于探索相关的特征集。
为了克服scRNA-seq数据中单个特征中大量的技术噪声,Seurat根据他们的PCA评分将细胞分组,每个PC实质上代表一个“元特征”,它将跨相关特征集的信息组合在一起。因此,最主要的组件代表了数据集的健壮压缩。但是,我们应该选择包含多少个主成分 10 个? 20个 100个?
在Macosko et al文章中,我们实现了一个重采样测试的灵感来自JackStraw程序。我们随机排列数据的一个子集(默认为1%)并重新运行PCA,构造一个特征得分的“null distribution”,然后重复这个过程。我们认为最“significant” 的PC是那些具有丰富的低p值特征的。
JackStrawPlot函数提供了一个可视化工具,用于用均匀分布(虚线)比较每个PC的p-values分布。“显著的”PCs将显示出一个低p值(虚线以上的实线)的强富集特性。在这种情况下,在最初的10-12个PCs之后,重要性似乎急剧下降。
另一种启发式方法生成“Elbow plot”:根据各成分解释的方差百分比对主要成分进行排序( ElbowPlot 函数)。在这个例子中,我们可以观察到PC9-10周围的一个拐点(“elbow”),这表明大部分真实信号是在前10个pc中捕获的。
对用户来说,确定数据集的真实维数是一项挑战/不确定的工作。因此,我们建议考虑这三种方法。第一个是更有监督的,探索PCs以确定相关的异质性来源,并可与GSEA联合使用。第二个实现了一个基于随机空模型的统计测试,但是对于大型数据集来说非常耗时,并且可能不会返回一个明确的PC截止时间。第三种是一种常用的启发式算法,可以立即计算出来。在这个例子中,所有这三种方法都产生了相似的结果,但是我们可能有理由选择PC 7-12之间的任何一个作为截止时间。
我们在这里选择了10个,但鼓励用户考虑以下几点:
Seurat v3应用了一种基于图的集群方法,建立在(Macosko等人)的初始策略之上。重要的是,驱动聚类分析的距离度量(基于先前确定的PCs)保持不变。然而,我们将细胞距离矩阵划分成集群的方法已经得到了极大的改进。我们的方法受到最近手稿的很大启发,这些手稿将基于图的聚类方法应用于scRNA-seq数据 [SNN-Cliq, Xu and Su, Bioinformatics, 2015]和CyTOF数据 [PhenoGraph, Levine et al, Cell, 2015]。简单地说,这些方法将单元格嵌入到一个图结构中——例如k -最近邻(KNN)图,在具有相似特征表达模式的单元格之间绘制边缘,然后尝试将这个图划分为高度互连的准团或社区。
和表现型一样,我们首先在PCA空间中构造一个基于欧氏距离的KNN图,然后根据任意两个细胞在局部区域的共享重叠(Jaccard相似性)来细化它们之间的边权值。此步骤使用 FindNeighbors 函数执行,并将之前定义的数据集维度(前10个pc)作为输入。
为了对单元进行聚类,我们接下来应用模块化优化技术,如Louvain算法(default)或SLM [SLM, Blondel et al, Journal of Statistical Mechanics],以迭代方式将单元分组在一起,目标是优化标准模块化函数。 FindClusters 函数实现这个过程,并包含一个分辨率参数,该参数设置下游集群的粒度,增加的值将导致更多的集群。我们发现,将该参数设置在04-12之间,对于3K左右的单细胞数据集通常会得到良好的结果。对于较大的数据集,最佳分辨率通常会增加。可以使用 Idents 函数找到集群。
查看前5个细胞的cluster id
Seurat提供了几种非线性的降维技术,如tSNE和UMAP,以可视化和探索这些数据集。这些算法的目标是学习数据的底层流形,以便在低维空间中将相似的单元放在一起。上面所确定的基于图的集群中的单元应该在这些降维图上共同定位。作为UMAP和tSNE的输入,我们建议使用相同的PCs作为聚类分析的输入。
此时可以保存对象,这样就可以轻松地将其加载回来,而不必重新运行上面执行的计算密集型步骤,或者轻松地与协作者共享。
Seurat可以帮助您找到通过差异表达式定义集群的标记。默认情况下,它识别单个簇的阳性和阴性标记(在 ident1 中指定),与所有其他细胞相比较。 Findallmarkers 为所有集群自动化这个过程,但是您也可以测试集群组之间的相互关系,或者测试所有细胞。
minpct 参数要求至少在两组细胞中的任何一组中检测一个特性,以及threshtest参数要求一个特性在两组之间有一定的差异(平均)。您可以将这两个值都设置为0,但是时间上有很大的增加——因为这将测试大量不太可能具有高度歧视性的特性。作为加速这些计算的另一个选项, maxcellsperident 可以设置。这将对每个标识类进行采样,使其不具有比设置的细胞更多的细胞。虽然通常会有功率的损失,速度的增长可能是显著的,最高度差异表达的特征可能仍然会上升到顶部。
找出区分cluster 5与cluster 0和cluster 3的所有标记
找出每个cluster的标记与所有剩余的细胞相比较,只报告阳性细胞
Seurat有几个关于微分表达式的测试,可以通过该测试设置。使用参数(详情请参阅我们的DE vignette)。例如,ROC测试返回任何单个标记(从0 - random到1 - perfect)的分类能力。
我们包括一些可视化标记表达的工具。 VlnPlot (显示跨集群的表达式概率分布)和 FeaturePlot (在tSNE或PCA图上可视化特性表达式)是我们最常用的可视化方法。我们还建议使用 RidgePlot 、 CellScatter 和 DotPlot 作为查看数据集的额外方法。
DoHeatmap 为给定的细胞和特征生成一个表达式heatmap。在本例中,我们绘制每个集群的前20个标记(如果小于20,则绘制所有标记)。
幸运的是,在这个数据集的情况下,我们可以使用规范的标记,以方便地匹配无偏聚类到已知的细胞类型:
一、QC七大手法分为: 1、简易七大手法:甘特图、流程图、5W2H、愚巧法、雷达法、统计图、推移图 2、QC旧七大手法:特性要因分析图、柏拉图、查检表、层别法、散布图、直方图、管制图 3、QC新七大手法:关连图、系统图法、KJ法、箭头图法、矩阵图法、PAPC法、矩阵数据解析法 计数值:以合格数、缺点数等使用点数计算而得的数据一般通称为计数数据。(数一数) 计量值:以重要、时间、含量、长度等可以测量而得来的数据,一般为计量值,如长度、重要、浓度,有小数点的凡四舍五入都称之。(量一量) 4、QC七大手法由五图,一表一法组成: 五图:柏拉图、散布图、直方图、管制图、特性要因分析图(鱼骨图) 一表:查检表(甘特图) 一法:层别法 二、介绍简易七大手法: 1、甘特图: 用途 1、工作进度安排 2、查核工作进度 3、掌握现况 4、日常计划管理用
是一种最容易、最有效的一种进度自我管理。 2、统计图(条形图): 用途 1、异常数据一目了然。 2、容易对照比较。 3、易看出结论。
应用最普通报章、杂志均可看到的图表。 应用到层别法。 3、推移图(趋势图): 用途 1、数据对时间变化管理使用。 2、可以把握现状、掌握问题点。 3、效果、差异比较。
了解数据差异最简单的方法,应用很广。 次品率、推移图。 4、流程图: 用途 1、工作内容之表示。 2、容易掌握工作站。 3、教育、说明用。
工作说明、内容之简易表示方法。 5、圆图: 用途 1、用以比较各部分构成比例。 2、以时钟旋转方向由大到小排列,将圆分成若干个扇形。 3、直截了当的描绘各项所占比例。
用到层别法。 三、介绍旧七大手法: 1、查检表(CHECK LIST) 用途 1、日常管理用 2、收集数据用 3、改善管理用
帮助每个人在最短时间内完成必要之数据收集 2、层别法: 用途 1、应用层别法、找出数据差异因素而对症下药。 2、以4M,每1M层别之。
1、 借用其他图形,本身无图形。 2、 由大到小排列。 3、柏拉图(计数值统计): 借用层别图。 由生产现场所收集到后数据,必须有效的加以分析、运用,才能成为人价值的数据。而将此数据加以分类、整理,并作成图表,充分的掌握问题点及重要原因,是时下不可缺的管理工具。而最为现场人员所使用于数据管理的图为柏拉图。 定义:1)根据所收集的数据,按不良原因、不良状况、不良项目、不良发生后位置等不同区分标准而加以整理、分类,借以寻求占最大比率的原因状况或位置,按其大小顺序后排列,再加上累积值的图形。 2)从柏拉图可看出哪一项目有问题,其影响度如何,以判断问题之所在,并针对问题点采取改善措施,故又称ABC图,(分析前面2-3项重要项目之控制。) 3)又因图后排列是依大小顺序,故又可称为排列图。 4)柏拉图制作说明: A 决定数据的分类项目 分类的方式有: a 结果的分类包括不良项目别、场所别、时间别、工程别。 b原因的分类包括材料别(厂商、成份等)。方式别(作业条件、程序、方法、环境等)、人(年龄、熟练度、经验等)、设备别(机械、工具等)。 分类的项目必须合乎问题的症结,一般的分类先从结果分类上着手,以便洞悉问题之所在,然后再进行原因分析,分析出问题产生之原因,以便采取有效的对策。将此分析的结果,依其结果与原因分别绘制柏拉图。 B 决定收集数据的期间,并按分类项目,在期间内收集数据。 考虑发生问题的状况,从中选择恰当的期限(如一天、一周、一月、一季或一年为期间)来收集数据。 C 依分类项目别,做数据整理,并作成统计表。 a 各项目按出现数据大小顺序排列,其他项排在最后一项,并求其累积数。(其他项不可大于前三项,若大于时应再细分)。 b求各项目数据所占比率累计数之影响度。 c其他项排在最后,若太大时,须检讨是否其他重要要因需提出。 不良率(%)=各项不良数÷总检查数100 影响度(%)=各项不良数÷总不良数×100 D 记入图表纸并依数据大小排列画出柱状图。 a 于图表用纸记入纵轴及横轴。纵轴左侧填不良数、不良率,或损失金额,纵轴右侧刻度表示累计影响度(比率);在最上方刻100%,左方则依收集数据大小做适当刻度。横轴填分类项目名称,由左至右按照所占比率大小记入,其他项则记在最右边。 b 横轴与纵轴应做适度比例,横轴不宜长于纵轴。 E 绘累计曲线: a点上累计不良数(或累计不良率)。 b 用折线连结。 F 绘累计比率: a 纵轴右边绘折线终点为100%。 b 将0~100%间分成10等分,把%的分度记上(即累计影响度)。 c 标出前三项(或四项)之累计影响度是否>80%或接近80%。 J 记入必要的事项: a 标题(目的)。 b 数据收集期间。 c 数据合计(总检查、不良数、不良率…等)。 d 工程别。 e 作成者(包括记录者,绘图者…)。 绘图注意事项:1)柏拉图之横轴是按项目别,依大小顺序由高而低排列,[其他]项排在最后一位。 2)柏拉图之柱形图宽度要一致,纵轴与横轴比例为3:2。 3)纵轴最高点为总不良数,且所表示之间距离一致。 4)次数少的项目太多时,可考虑将后几项归纳成[其他]项;其他项不应大于前几项,若大于时应再分析。有时,改变层别或分类的方法,亦可使分类的项目减少。通常,项目别包括其他项在内,以不要超过4~6项为原则。 5)改善前后之比较时: a 改善后,横轴项目别依照出现大小顺序由高而低排列。 b 前后比较基准须一致,且刻度应相同,则更易于比较。 4、管制图: (1) 何为管制图: 为使现场之品质状况达成吾人所谓之“管理”作业,一般均以侦测产品之 品质特性来替代“管理”作业是否正常,而品质特性是随着时间、各种状况有着高低的变化; 那么到底高到何种程度或低至何种状况才算吾人所谓异常?故设定一合理之高低界限,作为吾人探测现场制程状况是否在“管理”状态,即为管制图之基本根源。 管制图是于1924年由美国品管大师修哈特博士所发明。而主要主义即是一种以实际产品品质特性与依过去经验所研判之制程之能力的管制界 限比较,而以时间顺序用图形表示者。 (2) 基本特性: 一般管制图纵轴均设定为产品的品质特性,而以制程变化的数据为分度;横轴则为检测制品之群体代码或编号或年月日等,以时间别或制造先后别,依顺序将点绘于图上。 在管制图上有三条笔直的横线,中间的一条为中心线(Center Line,CL),一般以蓝色之实线绘制。左上方的一条称为管制上限(Upper Control Limit,UCL),在下方的称为管制下限(Lower Control Limit,LCL),对上、下管制界限之绘制,则一般均用红色之虚线表现之,以表示可接受之变异范围;至于实际产品品质特性之点连线条则大都以黑色实线表现绘制之。 (3) 管制图原理: 1)品质变异之形成原因 一般在制造的过程中,无论是多么精密的设备,环境,其品质特性一定都会有变动,绝无法做完全一样的制品;而引起变动的原因可分为两种,一种为偶然(机遇)原因,一种为异常(非机遇)原因。 2)管制图界限之构成: 管制图是以常分配中之三个标准差为理论依据,中心线为平均值,上、下管制界限以平均数加减三个标准差(±3σ)之值,以判断制程中是否有问题发生,此即修哈特博士所创之法。 (4) 管制图种类: 1)依数据性质分类: A 计量值管制图:所谓计量值系指管制图之数据均属于由量具实际量测而得;如长度、重量、浓度等特性均为连续性者。常用的有: a 平均数与全距管制图(X(—)-R Chart) b 平均数与标准差管制图(X(—)-σChart) c 中位数与全距管制图(X(~)-R Chart) d 个别值与移动全距管制图(X-Rm Chart) e 最大值与最小值管制图(L-S Chart) B 计数值管制图:所谓计数值是指管制图之数据均属于单位计算数者而得;如不良数、缺点数等间断性数据均属之。常用的有: a 不良率管制图(P Chart) b 不良数管制图(Pn chart ,又称np chart或d chart) c 缺点数管制图(C chart) d 单位缺点数管制图(U chart) 2)计数值与计量值管制图之应用比较 计量值
计数值 优点
1、甚灵敏,容易调查真因。 2、可及时反应不良,使品质稳定。
1、所须数据可用简单方法获得。 2、对整体品质状况之了解较方便。 缺点
1、抽样频度较高、费时麻烦。 2、数据须测定,且再计算,须有训练之人方可胜任。
1、无法寻得不良之真因。 2、及时性不足,易延误时机。 (5) 管制图之绘制: 介绍:计量值管制图(X-R)常用 1)先行收集100个以上数据,依测定之先后顺序排列之。 2)以2~5个数据为一组(一般采4~5个),分成约20-25组。 3)将各组数据记入数据表栏位内。 4)计算各组之平均值X。(取至测定值最小单位下一位数) 5)计算各组之全距R。(最大值-最小值=R) 6)计算总平均X。 X=(X1 X2 X3 … Xk)/k=ξXi/k(k为组数) 7)计算全距之平均R: R=(R1 R2 R3 … Rk)/k=ξRi/k 8)计算管制界限 X管制图:中心线(CL)=X 管制上限(UCL)=X A2R 管制下限(LCL)=X-A2R R管制图:中心线(CL)=R 管制上限(UCL)=D4R 管制下限(LCL)=D3R A2,D3,D4之值,随每组之样本数不同而有差异,但仍遵循三个标准差之原理,计算而得,今已被整理成常用系数表。 9)绘制中心线及管制界限,并将各点点入图中。 10)将各数据履历及特殊原因记入,以备查考、分析、判断。 (6) 管制点之点绘制要领: 1)各项工程名称、管制特性、测定单位、设备别、 *** 作(测定)者、样本大小、材料别、环境变化…等任何变更资料应清楚填入,以便资料之分析整理。 2)计量值变更管制图(X-R,X-R…等)其X管制图与R管制图的管制界限席宽度取法,一般原则以组之样本数(n)为参考,X管制图之单位分度约为R管制图之1/n倍。 (纵轴管制界限宽度约20-30m/m;横轴各组间隔约2-5mm) 3)中心线(CL)以实线记入,管制界限则记入虚线;各线上须依线别分别记入CL、UCL、LCL、等符号。 4)CL、UCL、LCL之数值位数计算比测定值多两位数即可。 (各组数据之平均计算数则取比测定值多一位数) 5)点之绘制有[·]、[○]、[△]、[×]…等,最好由厂内统一规定。 6)变管制图,二个管制图之绘制间隔最少距20mm以上,可行的话最好距30mm左右。 (7) 管制图之判读: 1)管制状态之判断(制程于稳定状态) A 多数点子集中在中心线附近。 B 少数点子落在管制界限附近。 C 点子之分布与跳动呈随机状态,无规则可循。 D 无点子超出管制界限以外。 2)可否延长管制限界限做为后续制程管制用之研判基准: A 连续25点以上出现在管制界限线内时(机率为9346%)。 B 连续35点中,出现在管制界限外点子不超出1点时。 C 连续100点中,出现在管制界限外点子不超出2点时。 制程在满足上述条件时,虽可认为制程在管制状态而不予变动管制界限,但并非点子超出管制界限外亦可接受;这此超限之点子必有异常原因,故应追究调查原因并予以消除之。 3)检定判读原则: A 应视每一个点子为一个分配,非单纯之点。 B 点子之动向代表制程之变化;虽无异常之原因,各点子在界限内仍会有差异存在。 C 异常之一般检定原则:(8) 管制图使用之注意事项: 1)管制图使用前,现场作业应予标准化作业完成。 2)管制图使用前,应先决定管制项目,包括品质特性之选择与取样数量之决定。 3)管制界限千万不可用规格值代替。 4)管制图种类之遴选应配合管制项目之决定时搭配之。 5)抽样方法以能取得合理样组为原则。 6)点子超出界限或有不正常之状态,必须利用各种措施研究改善或配合统计方法,把异常原因找出,同时加以消除。 7)X-R管制图里组的大小(n),一般采n=4-5最适合。 8)R管制图没下限,系因R值是由同组数据之最大值减最小值而得,因之LCL取负值没有意义。 9)制程管制做得不好,管制图形同虚设,要使管制图发挥效用,应使产品制程能力中之Cp值(制程精密度)大于1以上。
QC七大手法主要是指企业质量管理中常用的质量管理工具,有“老七种”和“新七种”之分。“老七种”有分层法、调查表、排列法、因果图、直方图、控制图和相关图,新的QC七种工具分别是系统图、关联图、亲和图、矩阵图、箭条图、PDPC法以及矩阵数据分析法等。
QC七大手法的用途非常广泛,可以用于企业管理的方方面面(包括计划管控、员工思想意识行为管理、质量管控、成本管控、交期管控、士气管理、环境管理、安全管理、效率管理、绩效考核、日常管理等等),但主要用于品质管理及改善。
七大手法口诀
因果追原因、检查集数据、柏拉抓重点、直方显分布、散布看相关、管制找异常、层别作解析。
1、因果图(特性要因图、石川图、鱼骨图)
定义当一个问题的特性(结果)受到一些要因(原因)影响时,将这些要因加以整理,成为有相互关系且有条理的图形,这个图形就称为特性要因图,又叫鱼骨图。
2、柏拉图
定义又称重点管理图,根据所收集的数据,以不同区分标准加以整理、分类,计算出各分类项目所占的比例而按照大小顺序排列,再加上累计值的图形。
3、数据及检查表─数据
定义所谓数据,就是根据测量所得到的数值和资料等事实。——数据=事实。
4、数据及检查表─检查表
定义以简单的数据、容易了解的方式做成图形或表格。表中记有检查的必要项目,只要记上检查记号,并加以统计整理,就可作为进一步分析或核对检查之用。
5、层别法
定义对观察到的现象或所收集到的数据,按照它们共同的特征加以分类、统计的一种分析方法。是容易观察,有效掌握事实的最有效、最简单的方法。
6、散布图
定义把互相有关联的对应数据,在方格纸上以纵轴表示结果,以横轴表示原因;然后用点表示出分布形态,根据分布的形态来判断对应数据之间的相互关系。
7、直方图
定义将所收集的数据、特性值或结果值,在横轴上适当地区分成几个相等区间,并将各区间内测定值所出现的次数累加起来,用柱形画出的图形。
获得转录组数据(fastq文件)后的第一步就是对原始数据的质量控制。
质量控制的目的是全面查看原始数据的质量,内容包括碱基质量评估、GC含量检验、N碱基数量评估、TCGA碱基分布、k-mer数量检验等。
可以于检验fastq文件质量的软件有很多,例如FastQC、fastp、multiQC等。本文主要介绍应用最多的FastQC。
FastQC是一款基于Java的软件,须在linux环境下使用命令行运行,它可以快速多线程地对测序数据进行质量评估(Quality Control),其官网地址为: Babraham Bioinformatics 。
FastQC可以使用conda进行安装。在linux环境下运行命令 conda install fastqc 即可,运行结果如下图。
运行命令 fastqc -h 可检验其是否成功安装,运行结果如下图。
使用 fastqc -o #输出结果全路径 #数据存储全路径/reads_R1fq 命令运行案例数据
运行后可获得如下结果。
报告第一部分既是对质量检测结果的基本信息统计,如上图所示。其中包括:
上图显示了检测fastq文件的整体碱基质量分数统计。
上图展示了每个tail的测序情况。
对每条序列(reads)的测序质量统计。
上图显示了A T C G在每个位置的平均分布情况。
上图展示了序列平均GC分布。
上图N碱基含量分布
上图展示了检验文件中序列的长度统计。
接下来就是基于QC结果对数据进行质量控制,我们应用cutadapt来做。
一、老QC七大手法包括:
检查表、层别法(分层法)、排列图(柏拉图)、直方图、鱼骨图(因果图)、控制图(管制图)、散布图。
二、QC新七大手法指的是:
关系图法、KJ法、系统图法、矩阵图法、矩阵数据分析法、PDPC法、网络图法。
三、运用途径:
列举介绍:
一、检查表
检查表是利用统计表对数据进行整理和初步原因分析的一种工具,其格式可多种多样,这种方法虽然较简单,但实用有效,主要作为记录或者点检所用。
二、数据分层法
数据分层法又称为层别法就是将性质相同的,在同一条件下收集的数据归纳在一起,以便进行比较分析。因为在实际生产中,影响质量变动的因素很多,如果不把这些因素区别开来,则难以得出变化的规律。数据分层可根据实际情况按多种方式进行。
三、排列图
排列图又称为柏拉图、重点分析图、ABC分析图,由此图的发明者19世纪意大利经济学家柏拉图(Pareto)的名字而得名。柏拉图最早用排列图分析社会财富分布的状况,他发现当时意大利80%财富集中在20%的人手里,后来人们发现很多场合都服从这一规律,于是称之为Pareto定律。
柏拉图分析的步骤:
(1)将要处置的事,以状况(现象)或原因加以层别;
(2)纵轴虽可以表示件数,但最好以金额表示比较强烈;
(3)决定搜集资料的期间,自何时至何时,作为柏拉图资料的依据,期限间尽可能定期;
(4)各项目依照合半之大小顺位左至右排列在横轴上;
(5)绘上柱状图;
(6)连接累积曲线。
四、直方图
在质量管理中,如何预测并监控产品质量状况如何对质量波动进行分析直方图就是一目了然地把这些问题图表化处理的工具。它通过对收集到的貌似无序的数据进行处理,来反映产品质量的分布情况,判断和预测产品质量及不合格率。
直方图又称质量分布图,柱状图,它是表示资料变化情况的一种主要工具。用直方图可以解析出资料的规则性,比较直观地看出产品质量特性的分布状态,对於资料分布状况一目了然,便于判断其总体质量分布情况。
在制作直方图时,牵涉统计学的概念,首先要对资料进行分组,因此如何合理分组是其中的关键问题。按组距相等的原则进行的两个关键数位是分组数和组距。是一种几何形图表,它是根据从生产过程中收集来的质量数据分布情况,画成以组距为底边、以频数为高度的一系列连接起来的直方型矩形图。
五、因果分析图
因果分析图是以结果作为特性,以原因作为因素,在它们之间用箭头联系表示因果关系。因果分析图是一种充分发动员工动脑筋,查原因,集思广益的好办法,也特别适合于工作小组中实行质量的民主管理。当出现了某种质量问题,未搞清楚原因时,可针对问题发动大家寻找可能的原因,使每个人都畅所欲言,把所有可能的原因都列出来。
所谓因果分析图,就是将造成某项结果的众多原因,以系统的方式图解,即以图来表达结果(特性)与原因(因素)之间的关系。其形状像鱼骨,又称鱼骨图。
某项结果之形成,必定有原因,应设法利用图解法找出其因。首先提出了这个概念的是日本品管权威石川馨博士,所以特性原因图又称[石川图]。因果分析图,可使用在一般管理及工作改善的各种阶段,特别是树立意识的初期,易于使问题的原因明朗化,从而设计步骤解决问题。
六、散布图
散布图又叫相关图,它是将两个可能相关的变量数据用点画在坐标图上,用来表示一组成对的数据之间是否有相关性。这种成对的数据或许是特性一原因,特性一特性,原因一原因的关系。通过对其观察分析,来判断两个变量之间的相关关系。
这种问题在实际生产中也是常见的,例如热处理时淬火温度与工件硬度之间的关系,某种元素在材料中的含量与材料强度的关系等。这种关系虽然存在,但又难以用精确的公式或函数关系表示,在这种情况下用相关图来分析就是很方便的。假定有一对变量x和y,x表示某一种影响因素,y表示某一质量特征值,通过实验或收集到的x和y的数据,可以在坐标图上用点表示出来,根据点的分布特点,就可以判断x和y的相关情况。
在我们的生活及工作中,许多现象和原因,有些呈规则的关联,有些呈不规则形有关联。我们要了解它,就可借助散布图统计手法来判断它们之间的相关关系。
七、控制图
控制图又称为管制图。由美国的贝尔电话实验所的休哈特(WAShewhart)博士在1924年首先提出,管制图使用后,就一直成为科学管理的一个重要工具,特别在质量管理方面成了一个不可或缺的管理工具。
它是一种有控制界限的图,用来区分引起质量波动的原因是偶然的还是系统的,可以提供系统原因存在的信息,从而判断生产过程是否处于受控状态。控制图按其用途可分为两类,一类是供分析用的控制图,用控制图分析生产过程中有关质量特性值的变化情况,看工序是否处于稳定受控状;再一类是供管理用的控制图,主要用于发现生产过程是否出现了异常情况,以预防产生不合格品。
以上就是关于Seurat 3.0 实例教程全部的内容,包括:Seurat 3.0 实例教程、电子行业QC的七大手法是那些.怎样用、qc七大手法包括什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)