人脸识别常用的人脸数据库有哪些

人脸识别常用的人脸数据库有哪些,第1张

给你提供几个线索,数据都可以去数据堂下载。

1.FERET人脸数据库 -

由FERET项目创建,包含1万多张多姿态和光照的人图像,是人脸识别领域应用最广泛的人脸数据库之一.其中的多数人是西方人,每个人所包含的人脸图像的变化比较单一

2.CMU-PIE人脸数据库

由美国卡耐基梅隆大学创建,包含68位志愿者的41,368张多姿态,光照和表情的面部图像.其中的姿态和光照变化图像也是在严格控制的条件下采集的,目前已经逐渐成为人脸识别领域的一个重要的测试集合

3.YALE人脸数据库

由耶鲁大学计算视觉与控制中心创建,包含15位志愿者的165张图片,包含光照,表情和姿态

的变化.

4. YALE人脸数据库B

包含了10个人的5,850幅多姿态,多光照的图像.其中的姿态和光照变化的图像都是在严格控制的条件下采集的,主要用于光照和姿态问题的建模与分析.由于采集人数较少,该数据库的进一步应用受到了比较大的限制

5. MIT人脸数据库

由麻省理工大学媒体实验室创建,包含16位志愿者的2,592张不同姿态,光照和大小的面部图像.

6. ORL人脸数据库

由剑桥大学AT&T实验室创建,包含40人共400张面部图像,部分志愿者的图像包括了姿态,

表情和面部饰物的变化.该人脸库在人脸识别研究的早期经常被人们采用,但由于变化模式较少,多数系统的识别率均可以达到90%以上,因此进一步利用的价值已经不大.

7. BioID人脸数据库

包含在各种光照和复杂背景下的1521张灰度面部图像,眼睛位置已经被手工标注。

2001年。 人脸识别最早是应用于安防领域。后来陆续在各大领域开始了数据库人脸识别。

人脸数据都去了哪儿?

早年,人脸识别还没有进入到深度学习的阶段,人脸数据收集还是打着隐私的烙印,研究人员需要获得志愿者同意,才能采集人脸数据纳入到数据库中。比如早期由耶鲁大学计算视觉与控制中心创建的Yale人脸数据库,只包含了15位志愿者的165张图片。

但是到了后期,尤其是深度学习技术的快速应用普及,几百张志愿者的人脸对于数据训练来说只是杯水车薪,人脸数据的收集也开始走向不可控。

是的。

在学习人脸检测的过程中,具体 *** 作的每个步骤都要先列出来。第一步需要在人脸数据库里添加一张经检测是否是人脸(怎么检测很重要)的照片,部是运用微信小程序里的camera组件检测是否是本人。

读数字这个过程是人脸识别最开始的验证流程,用来确认你本人脸型,和是否是你本人真人,你只需要对着摄像头念出屏幕上的数字即可,之后人脸识别才能正常使用。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10824435.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-11
下一篇 2023-05-11

发表评论

登录后才能评论

评论列表(0条)

保存