数据库,数据仓库和数据挖掘技术之间的区别

数据库,数据仓库和数据挖掘技术之间的区别,第1张

先说说数据仓库数据挖掘的关系,再说说数据库与数据仓库的关系

数据仓库与数据挖掘的联系

(1) 数据仓库为数据挖掘提供了更好的、更广泛的数据源。

(2) 数据仓库为数据挖掘提供了新的支持平台。

(3) 数据仓库为更好地使用数据挖掘这个工具提供了方便。

(4) 数据挖掘为数据仓库提供了更好的决策支持。

(5) 数据挖掘对数据仓库的数据组织提出了更高的要求。

(6) 数据挖掘还为数据仓库提供了广泛的技术支持。

数据仓库与数据挖掘的差别

(1) 数据仓库是一种数据存储和数据组织技术, 提供数据源。

(2) 数据挖掘是一种数据分析技术, 可针对数据仓库中的数据进行分析。

1、数据库:是一种逻辑概念,用来存放数据的仓库,通过数据库软件来实现。数据库由很多表组成,表是二维的,一张表里面有很多字段。字段一字排开,对数据就一行一行的写入表中。数据库的表,在于能够用二维表现多维的关系。如:oracle、DB2、MySQL、Sybase、MSSQL Server等。

2、数据仓库:是数据库概念的升级。从逻辑上理解,数据库和数据仓库没有区别,都是通过数据库软件实现存放数据的地方,只不过从数据量来说,数据仓库要比数据库更庞大德多。数据仓库主要用于数据挖掘和数据分析,辅助领导做决策;

区别主要总结为以下几点:

1.数据库只存放在当前值,数据仓库存放历史值;

2.数据库内数据是动态变化的,只要有业务发生,数据就会被更新,而数据仓库则是静态的历史数据,只能定期添加、刷新;

3.数据库中的数据结构比较复杂,有各种结构以适合业务处理系统的需要,而数据仓库中的数据结构则相对简单;

4.数据库中数据访问频率较高,但访问量较少,而数据仓库的访问频率低但访问量却很高;

5.数据库中数据的目标是面向业务处理人员的,为业务处理人员提供信息处理的支持,而数据仓库则是面向高层管理人员的,为其提供决策支持;

6.数据库在访问数据时要求响应速度快,其响应时间一般在几秒内,而数据仓库的响应时间则可长达数几小时

区别:

1、目的不同:

数据仓库是为了支持复杂的分析和决策,数据挖掘是为了在海量的数据里面发掘出预测性的、分析性的信息,多用来预测。

2、阶段不同:

数据仓库是数据挖掘的先期步骤,通过数据仓库的构建,提高了数据挖掘的效率和能力,保证了数据挖掘中的数据的宽广性和完整性。

3、处理方式不同:

数据挖掘是基于数据仓库和多维数据库中的数据,找到数据的潜在模式进行预测,它可以对数据进行复杂处理。大多数情况下,数据挖掘是让数据从数据仓库到数据挖掘数据库中。

联系:

1、数据仓库是为了数据挖掘做预准备,数据挖掘可建立在数据仓库之上。

2、最终目的都为了提升企业的信息化竞争能力。

扩展资料:

数据仓库与数据挖掘的发展历程:

关系数据库是20世纪70年代初提出来,经过数据库专家几十年的努力,理论和实践都取得了显著成果,标志着数据库技术的日益成熟。

但它仍然难以实现对关系数据库中数据的分析,不能很好地支持决策,因此在80年代,产生了数据仓库的思想,90年代,数据仓库的基本原理、架构形式和使用原则都已确定。

主要技术包括对数据库中数据访问、网络、C / S结构和图形界面,一些大公司已经开始构建数据仓库。针对数据仓库中迅速增长的海量数据的收集、存放,用人力已经不能解决,那么数据仓库中有用的知识的提取就需要数据挖掘来实现。

数据挖掘与统计学子领域“试探性数据分析”及人工智能子领域“知识发现”和机器学有关,是一门综合性的技术学科。

参考资料:

百度百科-数据挖掘

百度百科-数据仓库

数据仓库是要集成多种数据源,比如个人财务记录和购物记录,比如企业的原料、生产、销售的异构数据库。数据库一般是单一结构的,没办法集成异构源去做一个统一接口,所以在数据分析需求达到宏观规模后才弄出这么个概念来。所谓面向事务和面向主题就是这个意思。事务是数据记录查询的单一任务,主题是数据分析目标的相关数据范畴。

数据仓库是数据挖掘的对象,进行大规模的数据挖掘前先要建立数据仓库,数据挖掘的研究方向有偏向数据库的。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10828715.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-11
下一篇 2023-05-11

发表评论

登录后才能评论

评论列表(0条)

保存