数据字典(Data Dictionary DD)用于记载系统定义的或中间生成的各种数据、数据元素,以及常量、变量、数组及其他数据单位,说明它们的名字、性质、意义及各类约束条件,是系统开发与维护中不可缺少的重要文件。数据与数据元素分别用数据表、数据元素表记载。其中,数据号是设计人员给定的顺序编号,用于分类清查与整理,并且与数据元素代码相关联。数据名是原有表格或凭证的名称。
mysql分库分表一般有如下场景
其中1,2相对较容易实现,本文重点讲讲水平拆表和水平拆库,以及基于mybatis插件方式实现水平拆分方案落地。
在 《聊一聊扩展字段设计》 一文中有讲解到基于KV水平存储扩展字段方案,这就是非常典型的可以水平分表的场景。主表和kv表是一对N关系,随着主表数据量增长,KV表最大N倍线性增长。
这里我们以分KV表水平拆分为场景
对于kv扩展字段查询,只会根据id + key 或者 id 为条件的方式查询,所以这里我们可以按照id 分片即可
分512张表(实际场景具体分多少表还得根据字段增加的频次而定)
分表后表名为kv_000 ~ kv_511
id % 512 = 1 .... 分到 kv_001,
id % 512 = 2 .... 分到 kv_002
依次类推!
水平分表相对比较容易,后面会讲到基于mybatis插件实现方案
场景:以下我们基于博客文章表分库场景来分析
目标:
表结构如下(节选部分字段):
按照user_id sharding
假如分1024个库,按照user_id % 1024 hash
user_id % 1024 = 1 分到db_001库
user_id % 1024 = 2 分到db_002库
依次类推
目前是2个节点,假如后期达到瓶颈,我们可以增加至4个节点
最多可以增加只1024个节点,性能线性增长
对于水平分表/分库后,非shardingKey查询首先得考虑到
基于mybatis分库分表,一般常用的一种是基于spring AOP方式, 另外一种基于mybatis插件。其实两种方式思路差不多。
为了比较直观解决这个问题,我分别在Executor 和StatementHandler阶段2个拦截器
实现动态数据源获取接口
测试结果如下
由此可知,我们需要在Executor阶段 切换数据源
对于分库:
原始sql:
目标sql:
其中定义了三个注解
@useMaster 是否强制读主
@shardingBy 分片标识
@DB 定义逻辑表名 库名以及分片策略
1)编写entity
Insert
select
以上顺利实现mysql分库,同样的道理实现同时分库分表也很容易实现。
此插件具体实现方案已开源: https://github.com/bytearch/mybatis-sharding
目录如下:
mysql分库分表,首先得找到瓶颈在哪里(IO or CPU),是分库还是分表,分多少?不能为了分库分表而拆分。
原则上是尽量先垂直拆分 后 水平拆分。
以上基于mybatis插件分库分表是一种实现思路,还有很多不完善的地方,
例如:
1) 不应该针对整个系统进行数据库设计,而应该根据系统架构中的组件划分,针对每个组件所处理的业务进行组件单元的数据库设计;不同组件间所对应的数据库表之 间的关联应尽可能减少,如果不同组件间的表需要外键关联也尽量不要创建外键关联,而只是记录关联表的一个主键,确保组件对应的表之间的独立性,为系统或表 结构的重构提供可能性。2)采用领域模型驱动的方式和自顶向下的思路进行数据库设计,首先分析系统业务,根据职责定义对象。对象要符合封 装的特性,确保与职责相关的数据项被定义在一个对象之内,这些数据项能够完整描述该职责,不会出现职责描述缺失。并且一个对象有且只有一项职责,如果一个 对象要负责两个或两个以上的职责,应进行分拆。
3)根据建立的领域模型进行数据库表的映射,此时应参考数据库设计第二范式:一个表中的所 有非关键字属性都依赖于整个关键字。关键字可以是一个属性,也可以是多个属性的集合,不论那种方式,都应确保关键字能够保证唯一性。在确定关键字时,应保 证关键字不会参与业务且不会出现更新异常,这时,最优解决方案为采用一个自增数值型属性或一个随机字符串作为表的关键字。
4)由于第一点所述的领域模型驱动的方式设计数据库表结构,领域模型中的每一个对象只有一项职责,所以对象中的数据项不存在传递依赖,所以,这种思路的数据库表结构设计从一开始即满足第三范式:一个表应满足第二范式,且属性间不存在传递依赖。
5)同样,由于对象职责的单一性以及对象之间的关系反映的是业务逻辑之间的关系,所以在领域模型中的对象存在主对象和从对象之分,从对象是从1-N 或N-N的角度进一步主对象的业务逻辑,所以从对象及对象关系映射为的表及表关联关系不存在删除和插入异常。
6) 在映射后得出的数据库表结构中,应再根据第四范式进行进一步修改,确保不存在多值依赖。这时,应根据反向工程的思路反馈给领域模型。如果表结构中存在多值 依赖,则证明领域模型中的对象具有至少两个以上的职责,应根据第一条进行设计修正。第四范式:一个表如果满足BCNF,不应存在多值依赖。
7) 在经过分析后确认所有的表都满足二、三、四范式的情况下,表和表之间的关联尽量采用弱关联以便于对表字段和表结构的调整和重构。并且,我认为数据库中的表 是用来持久化一个对象实例在特定时间及特定条件下的状态的,只是一个存储介质,所以,表和表之间也不应用强关联来表述业务(数据间的一致性),这一职责应 由系统的逻辑层来保证,这种方式也确保了系统对于不正确数据(脏数据)的兼容性。当然,从整个系统的角度来说我们还是要尽最大努力确保系统不会产生脏数 据,单从另一个角度来说,脏数据的产生在一定程度上也是不可避免的,我们也要保证系统对这种情况的容错性。这是一个折中的方案。
8)应针 对所有表的主键和外键建立索引,有针对性的(针对一些大数据量和常用检索方式)建立组合属性的索引,提高检索效率。虽然建立索引会消耗部分系统资源,但比 较起在检索时搜索整张表中的数据尤其时表中的数据量较大时所带来的性能影响,以及无索引时的排序 *** 作所带来的性能影响,这种方式仍然是值得提倡的。
9) 尽量少采用存储过程,目前已经有很多技术可以替代存储过程的功能如“对象/关系映射”等,将数据一致性的保证放在数据库中,无论对于版本控制、开发和部 署、以及数据库的迁移都会带来很大的影响。但不可否认,存储过程具有性能上的优势,所以,当系统可使用的硬件不会得到提升而性能又是非常重要的质量属性 时,可经过平衡考虑选用存储过程。
10)当处理表间的关联约束所付出的代价(常常是使用性上的代价)超过了保证不会出现修改、删除、更改 异常所付出的代价,并且数据冗余也不是主要的问题时,表设计可以不符合四个范式。四个范式确保了不会出现异常,但也可能由此导致过于纯洁的设计,使得表结 构难于使用,所以在设计时需要进行综合判断,但首先确保符合四个范式,然后再进行精化修正是刚刚进入数据库设计领域时可以采用的最好办法。
11)设计出的表要具有较好的使用性,主要体现在查询时是否需要关联多张表且还需使用复杂的SQL技巧。
12)设计出的表要尽可能减少数据冗余,确保数据的准确性,有效的控制冗余有助于提高数据库的性能。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)